A family of virtual contraction based controllers for tracking of flexible‐joints port‐Hamiltonian robots: Theory and experiments
Authors
Rodolfo Reyes‐Báez, Arjan van der Schaft, Bayu Jayawardhana, Le Pan
Abstract
In this work, we present a constructive method to design a family of virtual contraction based controllers that solve the standard trajectory tracking problem of flexible‐joint robots in the port‐Hamiltonian framework. The proposed design method, called virtual contraction based control, combines the concepts of virtual control systems and contraction analysis. It is shown that under potential energy matching conditions, the closed‐loop virtual system is contractive and exponential convergence to a predefined trajectory is guaranteed. Moreover, the closed‐loop virtual system exhibits properties such as structure preservation, differential passivity, and the existence of (incrementally) passive maps. The method is later applied to a planar RR robot, and two nonlinear tracking control schemes in the developed controllers family are designed using different contraction analysis approaches. Experiments confirm the theoretical results for each controller.
Citation
- Journal: International Journal of Robust and Nonlinear Control
- Year: 2020
- Volume: 30
- Issue: 8
- Pages: 3269–3295
- Publisher: Wiley
- DOI: 10.1002/rnc.4929
BibTeX
@article{Reyes_B_ez_2020,
title={{A family of virtual contraction based controllers for tracking of flexible‐joints port‐Hamiltonian robots: Theory and experiments}},
volume={30},
ISSN={1099-1239},
DOI={10.1002/rnc.4929},
number={8},
journal={International Journal of Robust and Nonlinear Control},
publisher={Wiley},
author={Reyes‐Báez, Rodolfo and van der Schaft, Arjan and Jayawardhana, Bayu and Pan, Le},
year={2020},
pages={3269--3295}
}
References
- Nicosia, S. & Tomei, P. A tracking controller for flexible joint robots using only link position feedback. IEEE Transactions on Automatic Control vol. 40 885–890 (1995) – 10.1109/9.384223
- Spong, M. W. Modeling and Control of Elastic Joint Robots. Journal of Dynamic Systems, Measurement, and Control vol. 109 310–318 (1987) – 10.1115/1.3143860
- Wit CC, Theory of Robot Control (2012)
- Loria A, On tracking control of rigid and flexible joints robots. Appl Math Comput Sci (1995)
- Ailon, A. & Ortega, R. An observer-based set-point controller for robot manipulators with flexible joints. Systems & Control Letters vol. 21 329–335 (1993) – 10.1016/0167-6911(93)90076-i
- Brogliato, B., Ortega, R. & Lozano, R. Global tracking controllers for flexible-joint manipulators: a comparative study. Automatica vol. 31 941–956 (1995) – 10.1016/0005-1098(94)00172-f
- Ortega R, Passivity‐Based Control of Euler‐Lagrange Systems (2013)
- Astolfi, A. & Ortega, R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic Control vol. 48 590–606 (2003) – 10.1109/tac.2003.809820
- Albu-Schäffer, A., Ott, C. & Hirzinger, G. A Unified Passivity-based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots. The International Journal of Robotics Research vol. 26 23–39 (2007) – 10.1177/0278364907073776
- Avila-Becerril, S., Loria, A. & Panteley, E. Global position-feedback tracking control of flexible-joint robots. 2016 American Control Conference (ACC) 3008–3013 (2016) doi:10.1109/acc.2016.7525377 – 10.1109/acc.2016.7525377
- Pan, Y., Wang, H., Li, X. & Yu, H. Adaptive Command-Filtered Backstepping Control of Robot Arms With Compliant Actuators. IEEE Transactions on Control Systems Technology vol. 26 1149–1156 (2018) – 10.1109/tcst.2017.2695600
- Schaft AJ, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- Ortega, R. & Borja, L. P. New results on Control by Interconnection and Energy-Balancing Passivity-Based Control of port-hamiltonian systems. 53rd IEEE Conference on Decision and Control 2346–2351 (2014) doi:10.1109/cdc.2014.7039746 – 10.1109/cdc.2014.7039746
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Zhang, Q. et al. Interconnection and damping assignment passivity-based control for flexible joint robot. Proceeding of the 11th World Congress on Intelligent Control and Automation 4242–4249 (2014) doi:10.1109/wcica.2014.7053426 – 10.1109/wcica.2014.7053426
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Jardón-Kojakhmetov, H., Muñoz-Arias, M. & Scherpen, J. M. A. Model reduction of a flexible-joint robot: a port-Hamiltonian approach. IFAC-PapersOnLine vol. 49 832–837 (2016) – 10.1016/j.ifacol.2016.10.269
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Virtual Differential Passivity based Control for Tracking of Flexible-joints Robots. IFAC-PapersOnLine vol. 51 169–174 (2018) – 10.1016/j.ifacol.2018.06.048
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Tracking Control of Fully-actuated port-Hamiltonian Mechanical Systems via Sliding Manifolds and Contraction Analysis. IFAC-PapersOnLine vol. 50 8256–8261 (2017) – 10.1016/j.ifacol.2017.08.1395
- Forni, F. & Sepulchre, R. A Differential Lyapunov Framework for Contraction Analysis. IEEE Transactions on Automatic Control vol. 59 614–628 (2014) – 10.1109/tac.2013.2285771
- Pavlov, A. & van de Wouw, N. Convergent Systems: Nonlinear Simplicity. Lecture Notes in Control and Information Sciences 51–77 (2016) doi:10.1007/978-3-319-30357-4_3 – 10.1007/978-3-319-30357-4_3
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Sontag, E. D. Contractive Systems with Inputs. Lecture Notes in Control and Information Sciences 217–228 (2010) doi:10.1007/978-3-540-93918-4_20 – 10.1007/978-3-540-93918-4_20
- Wang, W. & Slotine, J.-J. E. On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics vol. 92 38–53 (2004) – 10.1007/s00422-004-0527-x
- Jouffroy, J. & Fossen, T. I. Tutorial on Incremental Stability Analysis using Contraction Theory. Modeling, Identification and Control: A Norwegian Research Bulletin vol. 31 93–106 (2010) – 10.4173/mic.2010.3.2
- Angeli, D. A Lyapunov approach to incremental stability properties. IEEE Transactions on Automatic Control vol. 47 410–421 (2002) – 10.1109/9.989067
- van der Schaft, A. J. On differential passivity. IFAC Proceedings Volumes vol. 46 21–25 (2013) – 10.3182/20130904-3-fr-2041.00008
- Khalil HK, Noninear Systems (1996)
- Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1987). doi:10.1007/bfb0042858 – 10.1007/bfb0042858
- Sanfelice, R. G. & Praly, L. Convergence of Nonlinear Observers on $\BBR^{n}$ With a Riemannian Metric (Part I). IEEE Transactions on Automatic Control vol. 57 1709–1722 (2012) – 10.1109/tac.2011.2179873
- Russo, G., di Bernardo, M. & Sontag, E. D. Global Entrainment of Transcriptional Systems to Periodic Inputs. PLoS Computational Biology vol. 6 e1000739 (2010) – 10.1371/journal.pcbi.1000739
- Forni, F. & Sepulchre, R. On differentially dissipative dynamical systems. IFAC Proceedings Volumes vol. 46 15–20 (2013) – 10.3182/20130904-3-fr-2041.00038
- Forni, F., Sepulchre, R. & van der Schaft, A. J. On differential passivity of physical systems. 52nd IEEE Conference on Decision and Control 6580–6585 (2013) doi:10.1109/cdc.2013.6760930 – 10.1109/cdc.2013.6760930
- Arimoto S, Robotics Research: 1st International Symposium (1984)
- Ott, C., Albu-Schaffer, A., Kugi, A. & Hirzinger, G. On the Passivity-Based Impedance Control of Flexible Joint Robots. IEEE Transactions on Robotics vol. 24 416–429 (2008) – 10.1109/tro.2008.915438
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Pavlov, A. & Marconi, L. Incremental passivity and output regulation. Proceedings of the 45th IEEE Conference on Decision and Control (2006) doi:10.1109/cdc.2006.377803 – 10.1109/cdc.2006.377803
- Kawano, Y. & Ohtsuka, T. Nonlinear Eigenvalue Approach to Differential Riccati Equations for Contraction Analysis. IEEE Transactions on Automatic Control vol. 62 6497–6504 (2017) – 10.1109/tac.2017.2655443