Irreversible port-Hamiltonian Approach to Modeling and Analyzing of Non-isothermal Chemical Reaction Networks
Authors
Li Wang, Bernhard Maschke, Arjan van der Schaft
Abstract
Inspired by great advances on the mathematical structure of chemical reaction networks governed by mass action kinetics and by one of the main features of Irreversible port-Hamiltonian formulation that the thermodynamic principles could be presented clearly and directly in its structure, the aim of our work is to utilize the Irreversible port-Hamiltonian formulation to study chemical reaction networks in non-isothermal case, including modeling, equilibrium and asymptotic stability.
Keywords
Chemical reaction network; Irreversible port Hamiltonian systems; Equilibrium; Lyapunov function; Asymptotic stability
Citation
- Journal: IFAC-PapersOnLine
- Year: 2016
- Volume: 49
- Issue: 26
- Pages: 134–139
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2016.12.115
- Note: Foundations of Systems Biology in Engineering - FOSBE 2016- Magdeburg, Germany, 9—12 October 2016
BibTeX
@article{Wang_2016,
title={{Irreversible port-Hamiltonian Approach to Modeling and Analyzing of Non-isothermal Chemical Reaction Networks}},
volume={49},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2016.12.115},
number={26},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Wang, Li and Maschke, Bernhard and van der Schaft, Arjan},
year={2016},
pages={134--139}
}
References
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering vol. 20 S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Callen, (2006)
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems vol. 12 159–174 (2006) – 10.1080/13873950500068823
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control vol. 22 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- Jillson, K. R. & Erik Ydstie, B. Process networks with decentralized inventory and flow control. Journal of Process Control vol. 17 399–413 (2007) – 10.1016/j.jprocont.2006.12.006
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Rao, S., van der Schaft, A. & Jayawardhana, B. A graph-theoretical approach for the analysis and model reduction of complex-balanced chemical reaction networks. Journal of Mathematical Chemistry vol. 51 2401–2422 (2013) – 10.1007/s10910-013-0218-8
- Sandler, (2006)
- Van der Schaft, A network dynamics approach to chemical reaction networks. International Journal of Control (2015)
- Van der Schaft, The hamiltonian formulation ol energy conserving physical systems with external ports. AEU. Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A., Rao, S. & Jayawardhana, B. On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics. SIAM Journal on Applied Mathematics vol. 73 953–973 (2013) – 10.1137/11085431x
- Ydstie, B. E. Passivity based control via the second law. Computers & Chemical Engineering vol. 26 1037–1048 (2002) – 10.1016/s0098-1354(02)00041-8