Weak Energy Shaping for Stochastic Controlled Port-Hamiltonian Systems
Authors
Francesco Cordoni, Luca Di Persio, Riccardo Muradore
Citation
- Journal: SIAM Journal on Control and Optimization
- Year: 2023
- Volume: 61
- Issue: 5
- Pages: 2902–2926
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/22m1482585
BibTeX
@article{Cordoni_2023,
title={{Weak Energy Shaping for Stochastic Controlled Port-Hamiltonian Systems}},
volume={61},
ISSN={1095-7138},
DOI={10.1137/22m1482585},
number={5},
journal={SIAM Journal on Control and Optimization},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Cordoni, Francesco and Di Persio, Luca and Muradore, Riccardo},
year={2023},
pages={2902--2926}
}
References
- Arnaudon, A., Ganaba, N. & Holm, D. D. The stochastic energy-Casimir method. Comptes Rendus. Mécanique vol. 346 279–290 (2018) – 10.1016/j.crme.2018.01.003
- Arnold, L., Crauel, H. & Wihstutz, V. Stabilization of Linear Systems by Noise. SIAM Journal on Control and Optimization vol. 21 451–461 (1983) – 10.1137/0321027
- Blankenstein, G. & van der Schaft, A. J. Symmetry and reduction in implicit generalized Hamiltonian systems. Reports on Mathematical Physics vol. 47 57–100 (2001) – 10.1016/s0034-4877(01)90006-0
- Breedveld, P. C. Port-based modeling of mechatronic systems. Mathematics and Computers in Simulation vol. 66 99–128 (2004) – 10.1016/j.matcom.2003.11.002
- Cordoni, F., Persio, L. D. & Muradore, R. A variable stochastic admittance control framework with energy tank. IFAC-PapersOnLine vol. 53 9986–9991 (2020) – 10.1016/j.ifacol.2020.12.2716
- Cordoni, F., Di Persio, L. & Muradore, R. Bilateral teleoperation of stochastic port‐Hamiltonian systems using energy tanks. International Journal of Robust and Nonlinear Control vol. 31 9332–9357 (2021) – 10.1002/rnc.5780
- Cordoni, F., Di Persio, L. & Muradore, R. Stabilization of bilateral teleoperators with asymmetric stochastic delay. Systems & Control Letters vol. 147 104828 (2021) – 10.1016/j.sysconle.2020.104828
- Cordoni, F., Di Persio, L. & Muradore, R. Stochastic Port-Hamiltonian Systems. Journal of Nonlinear Science vol. 32 (2022) – 10.1007/s00332-022-09853-2
- Cordoni, F. G., Di Persio, L. & Muradore, R. Discrete stochastic port-Hamiltonian systems. Automatica vol. 137 110122 (2022) – 10.1016/j.automatica.2021.110122
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Da Prato, G. & Zabczyk, J. Ergodicity for Infinite Dimensional Systems. (1996) doi:10.1017/cbo9780511662829 – 10.1017/cbo9780511662829
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Port-Based Modeling of Dynamic Systems. Modeling and Control of Complex Physical Systems 1–52 (2009) doi:10.1007/978-3-642-03196-0_1 – 10.1007/978-3-642-03196-0_1
- Florchinger, P. A stochastic version of Jurdjevic–Quinn theorem. Stochastic Analysis and Applications vol. 12 473–480 (1994) – 10.1080/07362999408809364
- Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM Journal on Control and Optimization vol. 37 1848–1864 (1999) – 10.1137/s0363012997317478
- Florchinger, P. Stabilization of Passive Nonlinear Stochastic Differential Systems by Bounded Feedback. Stochastic Analysis and Applications vol. 21 1255–1282 (2003) – 10.1081/sap-120026106
- Gay-Balmaz, F. & Yoshimura, H. Dirac reduction for nonholonomic mechanical systems and semidirect products. Advances in Applied Mathematics vol. 63 131–213 (2015) – 10.1016/j.aam.2014.10.004
- Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica vol. 97 134–142 (2018) – 10.1016/j.automatica.2018.07.031
- Huang, W., Ji, M., Liu, Z. & Yi, Y. Steady States of Fokker–Planck Equations: I. Existence. Journal of Dynamics and Differential Equations vol. 27 721–742 (2015) – 10.1007/s10884-015-9454-x
- Huang, W., Ji, M., Liu, Z. & Yi, Y. Concentration and limit behaviors of stationary measures. Physica D: Nonlinear Phenomena vol. 369 1–17 (2018) – 10.1016/j.physd.2017.12.009
- Karatzas, I. & Shreve, S. E. Brownian Motion. Graduate Texts in Mathematics 47–127 (1998) doi:10.1007/978-1-4612-0949-2_2 – 10.1007/978-1-4612-0949-2_2
- Khasminskii R., Stochastic Stability of Differential Equations (2011)
- Lasota, A. & Szarek, T. Lower bound technique in the theory of a stochastic differential equation. Journal of Differential Equations vol. 231 513–533 (2006) – 10.1016/j.jde.2006.04.018
- Lorenzi, L. & Bertoldi, M. Analytical Methods for Markov Semigroups. (2006) doi:10.1201/9781420011586 – 10.1201/9781420011586
- Lázaro-Camí, J.-A. & Ortega, J.-P. Stochastic hamiltonian dynamical systems. Reports on Mathematical Physics vol. 61 65–122 (2008) – 10.1016/s0034-4877(08)80003-1
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Satoh, S. Input‐to‐state stability of stochastic port‐Hamiltonian systems using stochastic generalized canonical transformations. International Journal of Robust and Nonlinear Control vol. 27 3862–3885 (2017) – 10.1002/rnc.3769
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Satoh, S. & Saeki, M. Bounded stabilisation of stochastic port-Hamiltonian systems. International Journal of Control vol. 87 1573–1582 (2014) – 10.1080/00207179.2014.880127
- Secchi C., Control of Interactive Robotic Interfaces: A Port-Hamiltonian Approach (2007)
- van der Schaft A., AEU Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Zakai, M. A Lyapunov Criterion for the Existence of Stationary Probability Distributions for Systems Perturbed by Noise. SIAM Journal on Control vol. 7 390–397 (1969) – 10.1137/0307028