Discrete stochastic port-Hamiltonian systems
Authors
Francesco Giuseppe Cordoni, Luca Di Persio, Riccardo Muradore
Abstract
The present paper aims at defining discrete stochastic port-Hamiltonian systems (SPHS). We introduce a suitable definition of discrete SPHS based on symplectic variational integrators. By properly choosing the collocation points for discrete-time SPHS we are able to approximate a continuous SPHS. Moreover, under suitable assumptions on the Hamiltonian of the system, we guarantee energy conservation, which is a key property in the standard PHS framework. Numerical examples are provided to show the goodness of the proposed method.
Keywords
Stochastic port-Hamiltonian systems; Passivity; Stochastic variational integrators
Citation
- Journal: Automatica
- Year: 2022
- Volume: 137
- Issue:
- Pages: 110122
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2021.110122
BibTeX
@article{Cordoni_2022,
title={{Discrete stochastic port-Hamiltonian systems}},
volume={137},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2021.110122},
journal={Automatica},
publisher={Elsevier BV},
author={Cordoni, Francesco Giuseppe and Di Persio, Luca and Muradore, Riccardo},
year={2022},
pages={110122}
}
References
- Bou-Rabee, N. & Owhadi, H. Stochastic variational integrators. IMA Journal of Numerical Analysis vol. 29 421–443 (2008) – 10.1093/imanum/drn018
- Burrage, K. & Burrage, P. M. General order conditions for stochastic Runge-Kutta methods for both commuting and non-commuting stochastic ordinary differential equation systems. Applied Numerical Mathematics vol. 28 161–177 (1998) – 10.1016/s0168-9274(98)00042-7
- Burrage, K. & Burrage, P. M. Order Conditions of Stochastic Runge–Kutta Methods by B-Series. SIAM Journal on Numerical Analysis vol. 38 1626–1646 (2000) – 10.1137/s0036142999363206
- Burrage, K. & Burrage, P. M. High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations. Applied Numerical Mathematics vol. 22 81–101 (1996) – 10.1016/s0168-9274(96)00027-x
- Cordoni, (2019)
- Cordoni, F., Persio, L. D. & Muradore, R. A variable stochastic admittance control framework with energy tank. IFAC-PapersOnLine vol. 53 9986–9991 (2020) – 10.1016/j.ifacol.2020.12.2716
- Cordoni, F., Di Persio, L. & Muradore, R. Bilateral teleoperation of stochastic port‐Hamiltonian systems using energy tanks. International Journal of Robust and Nonlinear Control vol. 31 9332–9357 (2021) – 10.1002/rnc.5780
- Cordoni, F., Di Persio, L. & Muradore, R. Stabilization of bilateral teleoperators with asymmetric stochastic delay. Systems & Control Letters vol. 147 104828 (2021) – 10.1016/j.sysconle.2020.104828
- Émery, (2012)
- Holm, D. D. & Tyranowski, T. M. Stochastic discrete Hamiltonian variational integrators. BIT Numerical Mathematics vol. 58 1009–1048 (2018) – 10.1007/s10543-018-0720-2
- Kloeden, (2013)
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Kotyczka, P. & Lefèvre, L. Discrete-Time Control Design Based on Symplectic Integration: Linear Systems. IFAC-PapersOnLine vol. 53 7563–7568 (2020) – 10.1016/j.ifacol.2020.12.1352
- Kraus, M. & Tyranowski, T. M. Variational integrators for stochastic dissipative Hamiltonian systems. IMA Journal of Numerical Analysis vol. 41 1318–1367 (2020) – 10.1093/imanum/draa022
- Ma, Q. & Ding, X. Stochastic symplectic partitioned Runge–Kutta methods for stochastic Hamiltonian systems with multiplicative noise. Applied Mathematics and Computation vol. 252 520–534 (2015) – 10.1016/j.amc.2014.12.045
- Marsden, J. E. & West, M. Discrete mechanics and variational integrators. Acta Numerica vol. 10 357–514 (2001) – 10.1017/s096249290100006x
- Milstein, G. N., Repin, Yu. M. & Tretyakov, M. V. Numerical Methods for Stochastic Systems Preserving Symplectic Structure. SIAM Journal on Numerical Analysis vol. 40 1583–1604 (2002) – 10.1137/s0036142901395588
- Satoh, S. Input‐to‐state stability of stochastic port‐Hamiltonian systems using stochastic generalized canonical transformations. International Journal of Robust and Nonlinear Control vol. 27 3862–3885 (2017) – 10.1002/rnc.3769
- Satoh, S. & Fujimoto, K. Stabilization of Time-varying Stochastic Port-Hamiltonian Systems Based on Stochastic Passivity. IFAC Proceedings Volumes vol. 43 611–616 (2010) – 10.3182/20100901-3-it-2016.00057
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Satoh, S. & Saeki, M. Bounded stabilisation of stochastic port-Hamiltonian systems. International Journal of Control vol. 87 1573–1582 (2014) – 10.1080/00207179.2014.880127
- Secchi, (2007)
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters vol. 55 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002