Bilateral teleoperation of stochastic port‐Hamiltonian systems using energy tanks
Authors
Francesco Cordoni, Luca Di Persio, Riccardo Muradore
Abstract
In this article we consider the general problem of how to properly endow a stochastic port‐Hamiltonian system (SPHS) with an energy tank, that is an energy reservoir that allows to guarantee the passivity property. We show that a stochastic bilateral teleoperation system, composed by a master robot and a slave robot modeled as SPHS, can be connected in a power‐preserving manner to energy tanks. The stored energy is continuously monitored to keep the system passive despite time‐varying communication delays and interaction with unknown environment that may destabilize the overall system. We will address latter problem considering a SPHS affected by a noise composed by a linear, multiplicative component in Itô form plus an additive one. We underline that such a scenario requires the introduction of an ad hoc notion of passivity.
Citation
- Journal: International Journal of Robust and Nonlinear Control
- Year: 2021
- Volume: 31
- Issue: 18
- Pages: 9332–9357
- Publisher: Wiley
- DOI: 10.1002/rnc.5780
BibTeX
@article{Cordoni_2021,
title={{Bilateral teleoperation of stochastic port‐Hamiltonian systems using energy tanks}},
volume={31},
ISSN={1099-1239},
DOI={10.1002/rnc.5780},
number={18},
journal={International Journal of Robust and Nonlinear Control},
publisher={Wiley},
author={Cordoni, Francesco and Di Persio, Luca and Muradore, Riccardo},
year={2021},
pages={9332--9357}
}
References
- Nisky, I., Okamura, A. M. & Hsieh, M. H. Effects of robotic manipulators on movements of novices and surgeons. Surgical Endoscopy vol. 28 2145–2158 (2014) – 10.1007/s00464-014-3446-5
- Sridhar, A. N., Briggs, T. P., Kelly, J. D. & Nathan, S. Training in Robotic Surgery—an Overview. Current Urology Reports vol. 18 (2017) – 10.1007/s11934-017-0710-y
- Ferraguti, F. et al. An Energy Tank-Based Interactive Control Architecture for Autonomous and Teleoperated Robotic Surgery. IEEE Transactions on Robotics vol. 31 1073–1088 (2015) – 10.1109/tro.2015.2455791
- Scholtz, J., Theofanos, M. & Antonishek, B. Development of a test bed for evaluating human-robot performance for explosive ordnance disposal robots. Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction 10–17 (2006) doi:10.1145/1121241.1121246 – 10.1145/1121241.1121246
- Franchi, A., Secchi, C., Hyoung Il Son, Bulthoff, H. H. & Giordano, P. R. Bilateral Teleoperation of Groups of Mobile Robots With Time-Varying Topology. IEEE Transactions on Robotics vol. 28 1019–1033 (2012) – 10.1109/tro.2012.2196304
- Hokayem, P. F. & Spong, M. W. Bilateral teleoperation: An historical survey. Automatica vol. 42 2035–2057 (2006) – 10.1016/j.automatica.2006.06.027
- Cordoni, F., Di Persio, L. & Muradore, R. Stabilization of bilateral teleoperators with asymmetric stochastic delay. Systems & Control Letters vol. 147 104828 (2021) – 10.1016/j.sysconle.2020.104828
- Secchi C, Control of Interactive Robotic Interfaces: A Port‐Hamiltonian Approach (2007)
- Duindam, V. & Stramigioli, S. Port-Based Asymptotic Curve Tracking for Mechanical Systems. European Journal of Control vol. 10 411–420 (2004) – 10.3166/ejc.10.411-420
- Franken, M., Stramigioli, S., Misra, S., Secchi, C. & Macchelli, A. Bilateral Telemanipulation With Time Delays: A Two-Layer Approach Combining Passivity and Transparency. IEEE Transactions on Robotics vol. 27 741–756 (2011) – 10.1109/tro.2011.2142430
- Lee, D. & Spong, M. W. Passive Bilateral Teleoperation With Constant Time Delay. IEEE Transactions on Robotics vol. 22 269–281 (2006) – 10.1109/tro.2005.862037
- Sun, D., Naghdy, F. & Du, H. Application of wave-variable control to bilateral teleoperation systems: A survey. Annual Reviews in Control vol. 38 12–31 (2014) – 10.1016/j.arcontrol.2014.03.002
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Satoh, S. Input‐to‐state stability of stochastic port‐Hamiltonian systems using stochastic generalized canonical transformations. International Journal of Robust and Nonlinear Control vol. 27 3862–3885 (2017) – 10.1002/rnc.3769
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Satoh, S. & Saeki, M. Bounded stabilisation of stochastic port-Hamiltonian systems. International Journal of Control vol. 87 1573–1582 (2014) – 10.1080/00207179.2014.880127
- Satoh, S. & Fujimoto, K. Stabilization of Time-varying Stochastic Port-Hamiltonian Systems Based on Stochastic Passivity. IFAC Proceedings Volumes vol. 43 611–616 (2010) – 10.3182/20100901-3-it-2016.00057
- Oksendal B, Stochastic Differential Equations: An Introduction with Applications (2013)
- Khalil HK, Nonlinear Systems (2002)
- Da Prato, G. & Zabczyk, J. Ergodicity for Infinite Dimensional Systems. (1996) doi:10.1017/cbo9780511662829 – 10.1017/cbo9780511662829
- Reiß, M., Riedle, M. & van Gaans, O. Delay differential equations driven by Lévy processes: Stationarity and Feller properties. Stochastic Processes and their Applications vol. 116 1409–1432 (2006) – 10.1016/j.spa.2006.03.002
- Bachmann, S. On the strong Feller property for stochastic delay differential equations with singular drift. Stochastic Processes and their Applications vol. 130 4563–4592 (2020) – 10.1016/j.spa.2020.01.008
- Wang, F.-Y. & Yuan, C. Harnack inequalities for functional SDEs with multiplicative noise and applications. Stochastic Processes and their Applications vol. 121 2692–2710 (2011) – 10.1016/j.spa.2011.07.001
- Maslowski, B. & Seidler, J. Probabilistic approach to the strong Feller property. Probability Theory and Related Fields vol. 118 187–210 (2000) – 10.1007/s440-000-8014-0
- Ivanov AF, Theory, stochastic stability and applications of stochastic delay differential equations: a survey of results. Differ Equat Dyn Syst (2003)
- Minelli, M., Ferraguti, F., Piccinelli, N., Muradore, R. & Secchi, C. An energy-shared two-layer approach for multi-master-multi-slave bilateral teleoperation systems. 2019 International Conference on Robotics and Automation (ICRA) (2019) doi:10.1109/icra.2019.8794335 – 10.1109/icra.2019.8794335
- Robuffo Giordano, P., Franchi, A., Secchi, C. & Bülthoff, H. H. A passivity-based decentralized strategy for generalized connectivity maintenance. The International Journal of Robotics Research vol. 32 299–323 (2013) – 10.1177/0278364912469671
- Hsu, E. Stochastic Analysis on Manifolds. Graduate Studies in Mathematics (2002) doi:10.1090/gsm/038 – 10.1090/gsm/038
- Wong, E. & Zakai, M. On the Convergence of Ordinary Integrals to Stochastic Integrals. The Annals of Mathematical Statistics vol. 36 1560–1564 (1965) – 10.1214/aoms/1177699916
- Siciliano B, Robotics: Modelling, Planning and Control (2010)
- Lewis, F. L., Dawson, D. M. & Abdallah, C. T. Robot Manipulator Control. (2003) doi:10.1201/9780203026953 – 10.1201/9780203026953
- Baños, D. R., Cordoni, F., Di Nunno, G., Di Persio, L. & Røse, E. E. Stochastic systems with memory and jumps. Journal of Differential Equations vol. 266 5772–5820 (2019) – 10.1016/j.jde.2018.10.052
- Di Girolami C, Generalized covariation for Banach space valued processes, Itô formula and applications. Osaka J Math (2014)
- Cont, R. & Fournié, D.-A. Functional Itô calculus and stochastic integral representation of martingales. The Annals of Probability vol. 41 (2013) – 10.1214/11-aop721
- Nuño, E., Basañez, L. & Ortega, R. Passivity-based control for bilateral teleoperation: A tutorial. Automatica vol. 47 485–495 (2011) – 10.1016/j.automatica.2011.01.004
- Sartori, E., Tadiello, C., Secchi, C. & Muradore, R. Tele-Echography using a Two-Layer Teleoperation Algorithm with Energy Scaling. 2019 International Conference on Robotics and Automation (ICRA) 1569–1575 (2019) doi:10.1109/icra.2019.8794152 – 10.1109/icra.2019.8794152
- Shaikhet, L. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. (Springer International Publishing, 2013). doi:10.1007/978-3-319-00101-2 – 10.1007/978-3-319-00101-2
- Khasminskii R, Stochastic Stability of Differential Equations (2011)
- Da Prato, G. & Zabczyk, J. Stochastic Equations in Infinite Dimensions. (2014) doi:10.1017/cbo9781107295513 – 10.1017/cbo9781107295513
- Zakai, M. A Lyapunov Criterion for the Existence of Stationary Probability Distributions for Systems Perturbed by Noise. SIAM Journal on Control vol. 7 390–397 (1969) – 10.1137/0307028
- Lasota, A. & Szarek, T. Lower bound technique in the theory of a stochastic differential equation. Journal of Differential Equations vol. 231 513–533 (2006) – 10.1016/j.jde.2006.04.018
- Karatzas I, Brownian Motion (1998)
- Skorokhod AV, Studies in the Theory of Random Processes (1982)
- Reiß, M., Riedle, M. & Gaans, O. van. On Émery’s Inequality and a Variation-of-Constants Formula. Stochastic Analysis and Applications vol. 25 353–379 (2007) – 10.1080/07362990601139586
- Fisk DL, Quasi‐martingales and Stochastic Integrals (1963)
- Stratonovich, R. L. A New Representation for Stochastic Integrals and Equations. SIAM Journal on Control vol. 4 362–371 (1966) – 10.1137/0304028
- Stroock, D. W. & Varadhan, S. R. S. On the Support of Diffusion Processes with Applications to the Strong Maximum Principle. Contributions to Probability Theory 333–360 (1972) doi:10.1525/9780520375918-020 – 10.1525/9780520375918-020
- Eugene, W. & Moshe, Z. On the relation between ordinary and stochastic differential equations. International Journal of Engineering Science vol. 3 213–229 (1965) – 10.1016/0020-7225(65)90045-5
- Smythe, J., Moss, F., McClintock, P. V. E. & Clarkson, D. Ito versus stratonovich revisited. Physics Letters A vol. 97 95–98 (1983) – 10.1016/0375-9601(83)90520-0
- van Kampen, N. G. Itô versus Stratonovich. Journal of Statistical Physics vol. 24 175–187 (1981) – 10.1007/bf01007642