Tuning of Passivity-Based Controllers for Mechanical Systems
Authors
Carmen Chan-Zheng, Pablo Borja, Jacquelien M. A. Scherpen
Abstract
This article describes several approaches for tuning the parameters of a class of passivity-based controllers for standard nonlinear mechanical systems. In particular, we are interested in tuning controllers that preserve the mechanical system structure in the closed loop. To this end, first, we provide tuning rules for stabilization, i.e., the rate of convergence (exponential stability) and stability margin (input-to-state stability). Then, we provide guidelines to remove the overshoot. In addition, we propose a methodology to tune the gyroscopic-related parameters. We also provide remarks on the damping phenomenon to facilitate the practical implementation of our approaches. We conclude this article with experimental results obtained from applying our tuning rules to a fully actuated and an underactuated mechanical system.
Citation
- Journal: IEEE Transactions on Control Systems Technology
- Year: 2023
- Volume: 31
- Issue: 6
- Pages: 2515–2530
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tcst.2023.3260995
BibTeX
@article{Chan_Zheng_2023,
title={{Tuning of Passivity-Based Controllers for Mechanical Systems}},
volume={31},
ISSN={2374-0159},
DOI={10.1109/tcst.2023.3260995},
number={6},
journal={IEEE Transactions on Control Systems Technology},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Chan-Zheng, Carmen and Borja, Pablo and Scherpen, Jacquelien M. A.},
year={2023},
pages={2515--2530}
}
References
- Romero, J. G., Ortega, R. & Sarras, I. A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Transactions on Automatic Control vol. 60 818–823 (2015) – 10.1109/tac.2014.2330701
- 2 DOF Serial Flexible Joint Reference Manual (2013)
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Chan-Zheng, C., Munoz-Arias, M. & Scherpen, J. M. A. Tuning Rules for Passivity-Based Integral Control for a Class of Mechanical Systems. IEEE Control Systems Letters vol. 7 37–42 (2023) – 10.1109/lcsys.2022.3186618
- Bechlioulis, C. P. & Rovithakis, G. A. Prescribed Performance Adaptive Control for Multi-Input Multi-Output Affine in the Control Nonlinear Systems. IEEE Transactions on Automatic Control vol. 55 1220–1226 (2010) – 10.1109/tac.2010.2042508
- Wen, J. T. & Potsaid, B. An experimental study of a high performance motion control system. Proceedings of the 2004 American Control Conference (2004) doi:10.23919/acc.2004.1384671 – 10.23919/acc.2004.1384671
- bol, Model Generator for Philips Experimental Robotics Arm (2012)
- bol, Force and position control of the Philips experimental robot arm in an energy based setting. (2012)
- Borja, P., Ortega, R. & Scherpen, J. M. A. New Results on Stabilization of Port-Hamiltonian Systems via PID Passivity-Based Control. IEEE Transactions on Automatic Control vol. 66 625–636 (2021) – 10.1109/tac.2020.2986731
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Wesselink, T. C., Borja, P. & Scherpen, J. M. A. Saturated control without velocity measurements for planar robots with flexible joints. 2019 IEEE 58th Conference on Decision and Control (CDC) 7093–7098 (2019) doi:10.1109/cdc40024.2019.9029741 – 10.1109/cdc40024.2019.9029741
- Dirksz, D. A. & Scherpen, J. M. A. Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica vol. 48 1045–1056 (2012) – 10.1016/j.automatica.2012.03.003
- Chen, F.-C. Back-propagation neural networks for nonlinear self-tuning adaptive control. IEEE Control Systems Magazine vol. 10 44–48 (1990) – 10.1109/37.55123
- Åström, K. J. & Hägglund, T. Revisiting the Ziegler–Nichols step response method for PID control. Journal of Process Control vol. 14 635–650 (2004) – 10.1016/j.jprocont.2004.01.002
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Rodriguez-Abreo, O., Rodriguez-Resendiz, J., Fuentes-Silva, C., Hernandez-Alvarado, R. & Falcon, M. D. C. P. T. Self-Tuning Neural Network PID With Dynamic Response Control. IEEE Access vol. 9 65206–65215 (2021) – 10.1109/access.2021.3075452
- munoz-arias, Energy-based control design for mechanical systems. (2015)
- rob, Philips Experimental Robot Arm User Instructor Manual (2010)
- Liang, J.-W. Damping estimation via energy-dissipation method. Journal of Sound and Vibration vol. 307 349–364 (2007) – 10.1016/j.jsv.2007.07.013
- Prandina, M., Mottershead, J. E. & Bonisoli, E. An assessment of damping identification methods. Journal of Sound and Vibration vol. 323 662–676 (2009) – 10.1016/j.jsv.2009.01.022
- Sandoval, J., Kelly, R. & Santibáñez, V. Interconnection and damping assignment passivity‐based control of a class of underactuated mechanical systems with dynamic friction. International Journal of Robust and Nonlinear Control vol. 21 738–751 (2011) – 10.1002/rnc.1622
- Chen, W.-H. Disturbance Observer Based Control for Nonlinear Systems. IEEE/ASME Transactions on Mechatronics vol. 9 706–710 (2004) – 10.1109/tmech.2004.839034
- Johnson, C. R. A Gersgorin-type lower bound for the smallest singular value. Linear Algebra and its Applications vol. 112 1–7 (1989) – 10.1016/0024-3795(89)90583-1
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- ADHIKARI, S. & WOODHOUSE, J. IDENTIFICATION OF DAMPING: PART 1, VISCOUS DAMPING. Journal of Sound and Vibration vol. 243 43–61 (2001) – 10.1006/jsvi.2000.3391
- Shen, S.-Q., Huang, T.-Z. & Yu, J. Eigenvalue Estimates for Preconditioned Nonsymmetric Saddle Point Matrices. SIAM Journal on Matrix Analysis and Applications vol. 31 2453–2476 (2010) – 10.1137/100783509
- Fu, B., Wang, Q. & He, W. Nonlinear Disturbance Observer-Based Control for a Class of Port-Controlled Hamiltonian Disturbed Systems. IEEE Access vol. 6 50299–50305 (2018) – 10.1109/access.2018.2868919
- Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Transactions on Automatic Control vol. 52 1093–1099 (2007) – 10.1109/tac.2007.899064
- Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control vol. 50 1936–1955 (2005) – 10.1109/tac.2005.860292
- Hamada, K., Borja, P., Scherpen, J. M. A., Fujimoto, K. & Maruta, I. Passivity-Based Lag-Compensators With Input Saturation for Mechanical Port-Hamiltonian Systems Without Velocity Measurements. IEEE Control Systems Letters vol. 5 1285–1290 (2021) – 10.1109/lcsys.2020.3032890
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- ortega, Passivity-based control of Euler-Lagrange Systems Mechanical Electrical and Electromechanical Applications (2013)
- Romero, J. G., Donaire, A., Ortega, R. & Borja, P. Global stabilisation of underactuated mechanical systems via PID passivity-based control. Automatica vol. 96 178–185 (2018) – 10.1016/j.automatica.2018.06.040
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control vol. 10 451–468 (2004) – 10.3166/ejc.10.451-468
- Benzi, M. & Simoncini, V. On the eigenvalues of a class of saddle point matrices. Numerische Mathematik vol. 103 173–196 (2006) – 10.1007/s00211-006-0679-9
- khalil, Nonlinear Systems (2002)
- Chan-Zheng, C., Borja, P. & Scherpen, J. M. A. Passivity-based control of mechanical systems with linear damping identification. IFAC-PapersOnLine vol. 54 255–260 (2021) – 10.1016/j.ifacol.2021.11.087
- Horn, R. A. & Johnson, C. R. Matrix Analysis. (2012) doi:10.1017/cbo9781139020411 – 10.1017/cbo9781139020411
- Sontag, E. D. & Wang, Y. On characterizations of the input-to-state stability property. Systems & Control Letters vol. 24 351–359 (1995) – 10.1016/0167-6911(94)00050-6
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1032–1044 (2018) – 10.1109/tac.2017.2732283
- Ghorbel, F., Srinivasan, B. & Spong, M. W. On the positive definiteness and uniform boundedness of the inertia matrix of robot manipulators. Proceedings of 32nd IEEE Conference on Decision and Control 1103–1108 doi:10.1109/cdc.1993.325355 – 10.1109/cdc.1993.325355
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Benzi, M., Golub, G. H. & Liesen, J. Numerical solution of saddle point problems. Acta Numerica vol. 14 1–137 (2005) – 10.1017/s0962492904000212
- Grune, L. Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Transactions on Automatic Control vol. 47 1499–1504 (2002) – 10.1109/tac.2002.802761
- Dirksz, D. A. & Scherpen, J. M. A. Tuning of dynamic feedback control for nonlinear mechanical systems. 2013 European Control Conference (ECC) 173–178 (2013) doi:10.23919/ecc.2013.6669346 – 10.23919/ecc.2013.6669346
- Jeltsema, D. & Scherpen, J. M. A. Tuning of Passivity-Preserving Controllers for Switched-Mode Power Converters. IEEE Transactions on Automatic Control vol. 49 1333–1344 (2004) – 10.1109/tac.2004.832236
- Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control vol. 75 645–665 (2002) – 10.1080/00207170210135939
- Chan-Zheng, C., Borja, P. & Scherpen, J. M. A. Tuning Rules for a Class of Passivity-Based Controllers for Mechanical Systems. IEEE Control Systems Letters vol. 5 1892–1897 (2021) – 10.1109/lcsys.2020.3044835
- Kotyczka, P. Local linear dynamics assignment in IDA-PBC. Automatica vol. 49 1037–1044 (2013) – 10.1016/j.automatica.2013.01.028
- Chan-Zheng, C., Borja, P., Monshizadeh, N. & Scherpen, J. M. A. Exponential Stability and Tuning for a Class of Mechanical Systems. 2021 European Control Conference (ECC) 1875–1880 (2021) doi:10.23919/ecc54610.2021.9655218 – 10.23919/ecc54610.2021.9655218
- Ferguson, J., Donaire, A. & Middleton, R. H. Kinetic-Potential Energy Shaping for Mechanical Systems With Applications to Tracking. IEEE Control Systems Letters vol. 3 960–965 (2019) – 10.1109/lcsys.2019.2919842
- Woolsey, C. et al. Controlled Lagrangian Systems with Gyroscopic Forcing and Dissipation. European Journal of Control vol. 10 478–496 (2004) – 10.3166/ejc.10.478-496
- Chang, D. E., Bloch, A. M., Leonard, N. E., Marsden, J. E. & Woolsey, C. A. The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems. ESAIM: Control, Optimisation and Calculus of Variations vol. 8 393–422 (2002) – 10.1051/cocv:2002045
- Borja, P., Santina, C. D. & Dabiri, A. On the Role of Coupled Damping and Gyroscopic Forces in the Stability and Performance of Mechanical Systems. IEEE Control Systems Letters vol. 6 3433–3438 (2022) – 10.1109/lcsys.2022.3185655