Tracking Control of Marine Craft in the port-Hamiltonian Framework: A Virtual Differential Passivity Approach
Authors
Rodolfo Reyes-Baez, Arjan van der Schaft, Bayu Jayawardhana, Alejandro Donaire, Tristan Perez
Abstract
In this work we propose a virtual contraction-based control (v-CBC) design approach to the tracking problem in marine craft modeled as port-Hamiltonian (pH) systems. The design method consists of three main steps: i) construct a virtual control system which has all the original marine craft pH model’s solutions embedded; ii) design a control law that makes the virtual control system contracting with a desired steady-state trajectory; iii) close the loop of the original marine craft pH model with above controllers. Due to the rigid body nature of marine craft, two v-CBC schemes are proposed; one in a body frame and another in an inertial frame. We show how the intrinsic structure of pH models and their workless forces can be exploited to construct virtual control systems for marine craft in both frames. The closed-loop system’s performance is evaluated on simulations.
Citation
- Journal: 2019 18th European Control Conference (ECC)
- Year: 2019
- Volume:
- Issue:
- Pages:
- Publisher: IEEE
- DOI: 10.23919/ecc.2019.8796246
BibTeX
@inproceedings{Reyes_Baez_2019,
title={{Tracking Control of Marine Craft in the port-Hamiltonian Framework: A Virtual Differential Passivity Approach}},
DOI={10.23919/ecc.2019.8796246},
booktitle={{2019 18th European Control Conference (ECC)}},
publisher={IEEE},
author={Reyes-Baez, Rodolfo and van der Schaft, Arjan and Jayawardhana, Bayu and Donaire, Alejandro and Perez, Tristan},
year={2019}
}
References
- Fossen, T. I. & Berge, S. P. Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics. Proceedings of the 36th IEEE Conference on Decision and Control vol. 5 4237–4242 – 10.1109/cdc.1997.649499
- Greenwood, D. T. Advanced Dynamics. (2003) doi:10.1017/cbo9780511800207 – 10.1017/cbo9780511800207
- Jouffroy, J. & Fossen, T. I. Tutorial on Incremental Stability Analysis using Contraction Theory. Modeling, Identification and Control: A Norwegian Research Bulletin vol. 31 93–106 (2010) – 10.4173/mic.2010.3.2
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- manchester, Unifying classical and optimization-based methods for robot tracking control with control contraction metrics. International Symposium on Robotics Research (ISRR) (2015)
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Pavlov, A. & van de Wouw, N. Convergent Systems: Nonlinear Simplicity. Lecture Notes in Control and Information Sciences 51–77 (2016) doi:10.1007/978-3-319-30357-4_3 – 10.1007/978-3-319-30357-4_3
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Tracking Control of Fully-actuated port-Hamiltonian Mechanical Systems via Sliding Manifolds and Contraction Analysis. IFAC-PapersOnLine vol. 50 8256–8261 (2017) – 10.1016/j.ifacol.2017.08.1395
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Virtual Differential Passivity based Control for Tracking of Flexible-joints Robots. IFAC-PapersOnLine vol. 51 169–174 (2018) – 10.1016/j.ifacol.2018.06.048
- reyes-báez, Virtual differential passivity based control for a class of mechanical systems in the port-hamiltonian framework (2018)
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1987). doi:10.1007/bfb0042858 – 10.1007/bfb0042858
- Forni, F. & Sepulchre, R. A Differential Lyapunov Framework for Contraction Analysis. IEEE Transactions on Automatic Control vol. 59 614–628 (2014) – 10.1109/tac.2013.2285771
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute vol. 354 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- fossen, Guidance and Control of Ocean Vehicles (1994)
- Forni, F., Sepulchre, R. & van der Schaft, A. J. On differential passivity of physical systems. 52nd IEEE Conference on Decision and Control 6580–6585 (2013) doi:10.1109/cdc.2013.6760930 – 10.1109/cdc.2013.6760930
- chang, Controlled Lagrangian and Hamiltonian systems (2002)
- Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control. (2011) doi:10.1002/9781119994138 – 10.1002/9781119994138
- arimoto, Stability and robustness of PID feedback control for robot manipulators of sensory capability. 1st International Symp of Robotics Research (1984)
- Sontag, E. D. Contractive Systems with Inputs. Lecture Notes in Control and Information Sciences 217–228 (2010) doi:10.1007/978-3-540-93918-4_20 – 10.1007/978-3-540-93918-4_20
- van der Schaft, A. J. On differential passivity. IFAC Proceedings Volumes vol. 46 21–25 (2013) – 10.3182/20130904-3-fr-2041.00008
- Sørensen, A. J. & Egeland, O. Design of ride control system for surface effect ships using dissipative control. Automatica vol. 31 183–199 (1995) – 10.1016/0005-1098(94)00090-6
- Wang, W. & Slotine, J.-J. E. On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics vol. 92 38–53 (2004) – 10.1007/s00422-004-0527-x
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- A. Woolsey, C. & E. Leonard, N. Stabilizing underwater vehicle motion using internal rotors. Automatica vol. 38 2053–2062 (2002) – 10.1016/s0005-1098(02)00136-x
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493