Virtual Differential Passivity based Control for Tracking of Flexible-joints Robots
Authors
Rodolfo Reyes-Báez, Arjan van der Schaft, Bayu Jayawardhana
Abstract
Based on recent advances in contraction methods in systems and control, in this paper we present the virtual differential passivity based control (v-dPBC) technique. This is a constructive design method that combines the concept of virtual systems and of differential passivity. We apply the method to the tracking control problem of flexible joints robots (FJRs) which are formulated in the port-Hamiltonian (pH) framework. Simulations on a two degrees of freedom FJR are presented to show the performance of a controller obtained with this approach.
Keywords
Differential passivity; contraction analysis; virtual systems; port-Hamiltonian systems; flexible-joints robots.
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 169–174
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.048
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Reyes_B_ez_2018,
title={{Virtual Differential Passivity based Control for Tracking of Flexible-joints Robots}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.048},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Reyes-Báez, Rodolfo and van der Schaft, Arjan and Jayawardhana, Bayu},
year={2018},
pages={169--174}
}
References
- Ailon, A. & Ortega, R. An observer-based set-point controller for robot manipulators with flexible joints. Systems & Control Letters vol. 21 329–335 (1993) – 10.1016/0167-6911(93)90076-i
- Albu-Schäffer, A., Ott, C. & Hirzinger, G. A Unified Passivity-based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots. The International Journal of Robotics Research vol. 26 23–39 (2007) – 10.1177/0278364907073776
- Arimoto, Stabilidty and robustness of pid feedback control for robot manipulators of sensory capability. (1984)
- Astolfi, A. & Ortega, R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic Control vol. 48 590–606 (2003) – 10.1109/tac.2003.809820
- Avila-Becerril, S., Loria, A. & Panteley, E. Global position-feedback tracking control of flexible-joint robots. 2016 American Control Conference (ACC) 3008–3013 (2016) doi:10.1109/acc.2016.7525377 – 10.1109/acc.2016.7525377
- Brogliato, B., Ortega, R. & Lozano, R. Global tracking controllers for flexible-joint manipulators: a comparative study. Automatica vol. 31 941–956 (1995) – 10.1016/0005-1098(94)00172-f
- Crouch, (1987)
- de Wit, (2012)
- Forni, F. & Sepulchre, R. A Differential Lyapunov Framework for Contraction Analysis. IEEE Transactions on Automatic Control vol. 59 614–628 (2014) – 10.1109/tac.2013.2285771
- Jardón-Kojakhmetov, H., Muñoz-Arias, M. & Scherpen, J. M. A. Model reduction of a flexible-joint robot: a port-Hamiltonian approach. IFAC-PapersOnLine vol. 49 832–837 (2016) – 10.1016/j.ifacol.2016.10.269
- Jouffroy, J. & Fossen, T. I. Tutorial on Incremental Stability Analysis using Contraction Theory. Modeling, Identification and Control: A Norwegian Research Bulletin vol. 31 93–106 (2010) – 10.4173/mic.2010.3.2
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Loria, On tracking control of rigid and flexible joints robots. Appl. Math. Comput. Sci (1995)
- Nicosia, S. & Tomei, P. A tracking controller for flexible joint robots using only link position feedback. IEEE Transactions on Automatic Control vol. 40 885–890 (1995) – 10.1109/9.384223
- Ortega, R. & Borja, L. P. New results on Control by Interconnection and Energy-Balancing Passivity-Based Control of port-hamiltonian systems. 53rd IEEE Conference on Decision and Control 2346–2351 (2014) doi:10.1109/cdc.2014.7039746 – 10.1109/cdc.2014.7039746
- Ortega, (1998)
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Pavlov, Convergent systems: nonlinear simplicity. (2017)
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Tracking Control of Fully-actuated port-Hamiltonian Mechanical Systems via Sliding Manifolds and Contraction Analysis. IFAC-PapersOnLine vol. 50 8256–8261 (2017) – 10.1016/j.ifacol.2017.08.1395
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Virtual Differential Passivity based Control for Tracking of Flexible-joints Robots. IFAC-PapersOnLine vol. 51 169–174 (2018) – 10.1016/j.ifacol.2018.06.048
- Sarras, On the modeling, linearization and energy shaping control of mechanical systems. LHMNLC 2012 (2012)
- Sontag, Contractive systems with inputs. (2010)
- Spong, M. W. Modeling and Control of Elastic Joint Robots. Journal of Dynamic Systems, Measurement, and Control vol. 109 310–318 (1987) – 10.1115/1.3143860
- Stadlmayr, R. & Schlacher, K. Tracking Control for Port-Hamiltonian Systems using Feedforward and Feedback Control and a State Observer. IFAC Proceedings Volumes vol. 41 1833–1838 (2008) – 10.3182/20080706-5-kr-1001.00313
- van der Schaft, A. J. On differential passivity. IFAC Proceedings Volumes vol. 46 21–25 (2013) – 10.3182/20130904-3-fr-2041.00008
- Wang, W. & Slotine, J.-J. E. On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics vol. 92 38–53 (2004) – 10.1007/s00422-004-0527-x
- Zada, V. & Belda, K. Mathematical modeling of industrial robots based on Hamiltonian mechanics. 2016 17th International Carpathian Control Conference (ICCC) 813–818 (2016) doi:10.1109/carpathiancc.2016.7501208 – 10.1109/carpathiancc.2016.7501208
- Zhang, Interconnection and damping assignment passivity-based control for flexible joint robot. (2014)