Structure preserving spatial discretization of 1D convection-diffusion port-Hamiltonian systems
Authors
Abstract
Convection-diffusion is a physical phenomenon that appears in a multitude of dynamical systems, e.g. vibrating string with damping or chemical and thermal systems. This paper focuses on a structure preserving spatial discretization scheme of a general dynamical system with convection and diffusion in the port-Hamiltonian framework. The preservation of the port-Hamiltonian structure ensures that specific properties, such as passivity, of the infinite dimensional system are preserved.
Citation
- Journal: IEEE Conference on Decision and Control and European Control Conference
- Year: 2011
- Volume:
- Issue:
- Pages: 6979–6984
- Publisher: IEEE
- DOI: 10.1109/cdc.2011.6160259
BibTeX
@inproceedings{Voss_2011,
title={{Structure preserving spatial discretization of 1D convection-diffusion port-Hamiltonian systems}},
DOI={10.1109/cdc.2011.6160259},
booktitle={{IEEE Conference on Decision and Control and European Control Conference}},
publisher={IEEE},
author={Voss, T. and Weiland, S.},
year={2011},
pages={6979--6984}
}
References
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der schaft, The hamiltonian formulation of energy conserving physical systems with external ports. AEU? Archiv fu?r Elektronik und U?bertragungstechnik (1995)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Voss, T. & Scherpen, J. M. A. Structure Preserving Spatial Discretization of a 1-D Piezoelectric Timoshenko Beam. Multiscale Model. Simul. 9, 129–154 (2011) – 10.1137/100789038
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control 19, 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- vo�, Stabilization and shape control of a 1-D piezoelectric timoshenko beam. Automatica (0)
- schro?ck, Motion planing for a flexible beam structure with macro-fiber composite acutators. Proceedings of the 10th European Control Conference (2009)
- Macchelli, A., Melchiorri, C. & Bassi, L. Port-based Modelling and Control of the Mindlin Plate. Proceedings of the 44th IEEE Conference on Decision and Control 5989–5994 doi:10.1109/cdc.2005.1583120 – 10.1109/cdc.2005.1583120
- Pasumarthy, R. & van der Schaft, A. A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach. Proceedings of the 45th IEEE Conference on Decision and Control 3984–3989 (2006) doi:10.1109/cdc.2006.377022 – 10.1109/cdc.2006.377022
- zienkiewicz, The Finite Element Method (2005)
- macchelli, Port Hamiltonian systems A unified approach for modeling and control finite and infinite dimensional physical systems (2003)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Moulla, R., Lefèvre, L. & Maschke, B. Geometric pseudospectral method for spatial integration of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems 17, 85–104 (2011) – 10.1080/13873954.2010.537524