Structure-preserving interpolation reduced-order modelling for efficient simulation of parametric port-Hamiltonian systems
Authors
Yu-Han Hu, Zhen Li, Kang-Li Xu
Abstract
No available
Citation
- Journal: International Journal of Systems Science
- Year: 2025
- Volume:
- Issue:
- Pages: 1–14
- Publisher: Informa UK Limited
- DOI: 10.1080/00207721.2025.2546345
BibTeX
@article{Hu_2025,
title={{Structure-preserving interpolation reduced-order modelling for efficient simulation of parametric port-Hamiltonian systems}},
ISSN={1464-5319},
DOI={10.1080/00207721.2025.2546345},
journal={International Journal of Systems Science},
publisher={Informa UK Limited},
author={Hu, Yu-Han and Li, Zhen and Xu, Kang-Li},
year={2025},
pages={1--14}
}
References
- Absil, P.-A., Mahony, R. & Sepulchre, R. Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation. Acta Applicandae Mathematicae 80, 199–220 (2004) – 10.1023/b:acap.0000013855.14971.91
- Absil, P.-A., Mahony, R. & Sepulchre, R. Optimization Algorithms on Matrix Manifolds. (2008) doi:10.1515/9781400830244 – 10.1515/9781400830244
- Amsallem, D. & Farhat, C. Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity. AIAA Journal 46, 1803–1813 (2008) – 10.2514/1.35374
- Amsallem, D. & Farhat, C. An Online Method for Interpolating Linear Parametric Reduced-Order Models. SIAM J. Sci. Comput. 33, 2169–2198 (2011) – 10.1137/100813051
- Antoulas, A. C., Beattie, C. A. & Güğercin, S. Interpolatory Methods for Model Reduction. (Society for Industrial and Applied Mathematics, 2020). doi:10.1137/1.9781611976083 – 10.1137/1.9781611976083
- Baur, U., Beattie, C., Benner, P. & Gugercin, S. Interpolatory Projection Methods for Parameterized Model Reduction. SIAM J. Sci. Comput. 33, 2489–2518 (2011) – 10.1137/090776925
- Benner, P., Gugercin, S. & Willcox, K. A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems. SIAM Rev. 57, 483–531 (2015) – 10.1137/130932715
- Chellappa, S., Feng, L. & Benner, P. Accurate error estimation for model reduction of nonlinear dynamical systems via data-enhanced error closure. Computer Methods in Applied Mechanics and Engineering 420, 116712 (2024) – 10.1016/j.cma.2023.116712
- Chen, Y., Balakrishnan, V., Koh, C.-K. & Roy, K. Model reduction in the time-domain using Laguerre polynomials and Krylov methods. Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition 931–935 doi:10.1109/date.2002.998411 – 10.1109/date.2002.998411
- Cohen, A., Dahmen, W., DeVore, R. & Nichols, J. Reduced Basis Greedy Selection Using Random Training Sets. ESAIM: M2AN 54, 1509–1524 (2020) – 10.1051/m2an/2020004
- Daniel, L., Siong, O. C., Chay, L. S., Lee, K. H. & White, J. A Multiparameter Moment-Matching Model-Reduction Approach for Generating Geometrically Parameterized Interconnect Performance Models. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 23, 678–693 (2004) – 10.1109/tcad.2004.826583
- de Boor, C. & Ron, A. Computational aspects of polynomial interpolation in several variables. Math. Comp. 58, 705–705 (1992) – 10.1090/s0025-5718-1992-1122061-0
- Edelman, A., Arias, T. A. & Smith, S. T. The Geometry of Algorithms with Orthogonality Constraints. SIAM J. Matrix Anal. & Appl. 20, 303–353 (1998) – 10.1137/s0895479895290954
- Feng, L. & Benner, P. A New Error Estimator for Reduced-Order Modeling of Linear Parametric Systems. IEEE Trans. Microwave Theory Techn. 67, 4848–4859 (2019) – 10.1109/tmtt.2019.2948858
- Feng, L. & Benner, P. On error estimation for reduced-order modeling of linear non-parametric and parametric systems. ESAIM: M2AN 55, 561–594 (2021) – 10.1051/m2an/2021001
- Giftthaler, M., Wolf, T., Panzer, H. K. F. & Lohmann, B. Parametric Model Order Reduction of Port-Hamiltonian Systems by Matrix Interpolation. at - Automatisierungstechnik 62, 619–628 (2014) – 10.1515/auto-2013-1072
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48, 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Hesthaven, J. S., Rozza, G. & Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics (Springer International Publishing, 2016). doi:10.1007/978-3-319-22470-1 – 10.1007/978-3-319-22470-1
- Lassila, T., Quarteroni, A. & Rozza, G. A Reduced Basis Model with Parametric Coupling for Fluid-Structure Interaction Problems. SIAM J. Sci. Comput. 34, A1187–A1213 (2012) – 10.1137/110819950
- Li, Z. & Jiang, Y.-L. Parallel Input-Independent Model Order Reduction for Discrete-Time Parametric Systems. IEEE Trans. Automat. Contr. 1–8 (2022) doi:10.1109/tac.2022.3206405 – 10.1109/tac.2022.3206405
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46, 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters 61, 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Rettberg, J. et al. Improved a posteriori error bounds for reduced port-Hamiltonian systems. Adv Comput Math 50, (2024) – 10.1007/s10444-024-10195-8
- Scheuermann, T. M., Kotyczka, P. & Lohmann, B. On parametric structure preserving model order reduction of linear port-Hamiltonian systems. at - Automatisierungstechnik 67, 521–525 (2019) – 10.1515/auto-2018-0134
- Schwerdtner, P. & Schaller, M. Structured Optimization-Based Model Order Reduction for Parametric Systems. SIAM J. Sci. Comput. 47, A72–A101 (2025) – 10.1137/22m1524928
- Weile, D. S., Michielssen, E., Grimme, E. & Gallivan, K. A method for generating rational interpolant reduced order models of two-parameter linear systems. Applied Mathematics Letters 12, 93–102 (1999) – 10.1016/s0893-9659(99)00063-4
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control 16, 401–406 (2010) – 10.3166/ejc.16.401-406
- Xu, K. & Jiang, Y. Structure‐preserving interval‐limited balanced truncation reduced models for port‐Hamiltonian systems. IET Control Theory & Appl 14, 405–414 (2020) – 10.1049/iet-cta.2019.0566
- Xu, K.-L. & Jiang, Y.-L. Riemannian Geometric-Nonlinear Conjugate Gradient Model Order Reduction of Linear Port-Hamiltonian Systems on Finite Frequency Intervals. IEEE Trans. Automat. Contr. 69, 3317–3324 (2024) – 10.1109/tac.2023.3321902
- Xu, K.-L., Jiang, Y.-L., Li, Z. & Li, L. Model reduction of discrete time-delay systems based on Charlier polynomials and high-order Krylov subspaces. Linear Algebra and its Applications 661, 222–246 (2023) – 10.1016/j.laa.2022.12.020
- Xu, K.-L., Li, Z. & Benner, P. Parametric Interpolation Model Order Reduction on Grassmann Manifolds by Parallelization. IEEE Trans. Circuits Syst. II 72, 198–202 (2025) – 10.1109/tcsii.2024.3460171
- Zhang, J., Yang, D., Zhang, H. & Su, H. Adaptive Secure Practical Fault-tolerant Output Regulation of Multiagent Systems With DoS Attacks by Asynchronous Communications. IEEE Trans. Netw. Sci. Eng. 1–10 (2023) doi:10.1109/tnse.2023.3281899 – 10.1109/tnse.2023.3281899
- Zhou, Z., Zhang, J., Wang, Y., Yang, D. & Liu, Z. Adaptive Neural Control of Superheated Steam System in Ultra-Supercritical Units With Output Constraints Based on Disturbance Observer. IEEE Trans. Circuits Syst. I 72, 2701–2711 (2025) – 10.1109/tcsi.2025.3530995