Structure‐preserving interval‐limited balanced truncation reduced models for port‐Hamiltonian systems
Authors
Abstract
In this study, the authors propose structure‐preserving balanced truncation methods of port‐Hamiltonian systems over the frequency and time intervals. First, the port‐Hamiltonian system is reduced based on the frequency‐interval controllability and observability Gramians. In order to reduce the computational cost, the frequency‐interval cross Gramian is utilised to yield the frequency‐interval balanced truncation method. For the symmetric port‐Hamiltonian systems, the authors prove that these two methods can generate equivalent reduced systems. Additionally, they are also devoted in exploring two structure‐preserving balanced truncation methods over time intervals, where one is based on the time interval controllability and observability Gramians and the other is based on the time interval cross Gramian. All the resulting reduced systems have port‐Hamiltonian structure, and as a consequence, they are passive. Two numerical examples are simulated to demonstrate the efficiency of the proposed methods.
Citation
- Journal: IET Control Theory & Applications
- Year: 2020
- Volume: 14
- Issue: 3
- Pages: 405–414
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/iet-cta.2019.0566
BibTeX
@article{Xu_2020,
title={{Structure‐preserving interval‐limited balanced truncation reduced models for port‐Hamiltonian systems}},
volume={14},
ISSN={1751-8652},
DOI={10.1049/iet-cta.2019.0566},
number={3},
journal={IET Control Theory & Applications},
publisher={Institution of Engineering and Technology (IET)},
author={Xu, Kangli and Jiang, Yaolin},
year={2020},
pages={405--414}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Jiang Y.L.. Model order reduction methods (2010)
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control vol. 26 17–32 (1981) – 10.1109/tac.1981.1102568
- GrimmeE.(1997). ‘Krylov projection methods for model reduction’. PhD thesis Coordinated Science Laboratory University of Illinois at Urbana‐Champaign
- Van Dooren, P., Gallivan, K. A. & Absil, P.-A. $H^2$-optimal model reduction of MIMO systems. Applied Mathematics Letters vol. 21 1267–1273 (2008) – 10.1016/j.aml.2007.09.015
- Wilson, D. A. Optimum solution of model-reduction problem. Proceedings of the Institution of Electrical Engineers vol. 117 1161 (1970) – 10.1049/piee.1970.0227
- Zhang, L. & Lam, J. On H2 model reduction of bilinear systems. Automatica vol. 38 205–216 (2002) – 10.1016/s0005-1098(01)00204-7
- Xu, K. & Jiang, Y. Reduced optimal models via cross Gramian for continuous linear time‐invariant systems. IET Circuits, Devices & Systems vol. 12 25–32 (2017) – 10.1049/iet-cds.2016.0430
- Li, Z., Jiang, Y. & Xu, K. Non‐linear model‐order reduction based on tensor decomposition and matrix product. IET Control Theory & Applications vol. 12 2253–2262 (2018) – 10.1049/iet-cta.2018.5264
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Ionescu, T. C. & Astolfi, A. Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica vol. 49 2424–2434 (2013) – 10.1016/j.automatica.2013.05.006
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Jiang, Y.-L. & Xu, K.-L. Model Order Reduction of Port-Hamiltonian Systems by Riemannian Modified Fletcher–Reeves Scheme. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 66 1825–1829 (2019) – 10.1109/tcsii.2019.2895872
- Iwasaki, T., Hara, S. & Yamauchi, H. Dynamical system design from a control perspective: finite frequency positive-realness approach. IEEE Transactions on Automatic Control vol. 48 1337–1354 (2003) – 10.1109/tac.2003.815013
- GAWRONSKI, W. & JUANG, J.-N. Model reduction in limited time and frequency intervals. International Journal of Systems Science vol. 21 349–376 (1990) – 10.1080/00207729008910366
- Petersson, D. & Löfberg, J. Model reduction using a frequency-limited -cost. Systems & Control Letters vol. 67 32–39 (2014) – 10.1016/j.sysconle.2014.02.004
- Vuillemin, P., Poussot-Vassal, C. & Alazard, D. H2 optimal and frequency limited approximation methods for large-scale LTI dynamical systems. IFAC Proceedings Volumes vol. 46 719–724 (2013) – 10.3182/20130204-3-fr-2033.00061
- Xu, K.-L. & Jiang, Y.-L. An approach to H2, model reduction on finite interval for bilinear systems. Journal of the Franklin Institute vol. 354 7429–7443 (2017) – 10.1016/j.jfranklin.2017.08.037
- Li, X., Yin, S. & Gao, H. Passivity-preserving model reduction with finite frequency $H^\infty$ approximation performance. Automatica vol. 50 2294–2303 (2014) – 10.1016/j.automatica.2014.07.001
- Shaker, H. R. & Tahavori, M. Frequency-Interval Model Reduction of Bilinear Systems. IEEE Transactions on Automatic Control vol. 59 1948–1953 (2014) – 10.1109/tac.2013.2295661
- Gugercin, S. & Li, J.-R. Smith-Type Methods for Balanced Truncation of Large Sparse Systems. Lecture Notes in Computational Science and Engineering 49–82 doi:10.1007/3-540-27909-1_2 – 10.1007/3-540-27909-1_2
- Phillips, J. R., Daniel, L. & Silveira, L. M. Guaranteed passive balancing transformations for model order reduction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 22 1027–1041 (2003) – 10.1109/tcad.2003.814949
- Fernando, K. & Nicholson, H. On a fundamental property of the cross- Gramian matrix. IEEE Transactions on Circuits and Systems vol. 31 504–505 (1984) – 10.1109/tcs.1984.1085524
- Jazlan, A., Sreeram, V., Shaker, H. R., Togneri, R. & Minh, H. B. Frequency Interval Cross Gramians for Linear and Bilinear Systems. Asian Journal of Control vol. 19 22–34 (2016) – 10.1002/asjc.1330
- Jiang, Y.-L., Qi, Z.-Z. & Yang, P. Model Order Reduction of Linear Systems via the Cross Gramian and SVD. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 66 422–426 (2019) – 10.1109/tcsii.2018.2864115
- Jazlan A.. 5th Australian Control Conf. (AUCC) (2015)
- Bartels, R. H. & Stewart, G. W. Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4]. Communications of the ACM vol. 15 820–826 (1972) – 10.1145/361573.361582
- Gugercin, S. & Antoulas, A. C. A Survey of Model Reduction by Balanced Truncation and Some New Results. International Journal of Control vol. 77 748–766 (2004) – 10.1080/00207170410001713448
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052