On passivity based control of stochastic port-Hamiltonian systems
Authors
Abstract
This paper introduces Stochastic Port-Hamiltonian Systems (SPHS’s), whose dynamics are described by Itô stochastic differential equations. SPHS’s are extension of the deterministic port-Hamiltonian systems which are used to express various passive systems. First, we show a necessary and sufficient condition to preserve the stochastic port-Hamiltonian structure of the system under a class of coordinate transformations. Second, we derive a condition for the system to be stochastic passive. Third, we equip Stochastic Generalized Canonical Transformations (SGCT’s), which are pairs of coordinate and feedback transformations preserving the stochastic port-Hamiltonian structure. Finally, we propose a stochastic stabilization framework based on stochastic passivity and SGCT’s.
Citation
- Journal: 2008 47th IEEE Conference on Decision and Control
- Year: 2008
- Volume:
- Issue:
- Pages: 4951–4956
- Publisher: IEEE
- DOI: 10.1109/cdc.2008.4738733
BibTeX
@inproceedings{Satoh_2008,
title={{On passivity based control of stochastic port-Hamiltonian systems}},
DOI={10.1109/cdc.2008.4738733},
booktitle={{2008 47th IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Satoh, Satoshi and Fujimoto, Kenji},
year={2008},
pages={4951--4956}
}
References
- satoh, stabilization of time-varying stochastic port-hamiltonian systems and its application to stochastic trajectory tracking control. Proc 37th SICE Symposium on Control Theory (2008)
- Itô, K. On a Formula Concerning Stochastic Differentials. Selected Papers 169–179 (1987) doi:10.1007/978-1-4612-5370-9_11 – 10.1007/978-1-4612-5370-9_11
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- ohsumi, Introduction to Stochastic Systems (2002)
- Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis vol. 45 352–393 (1972) – 10.1007/bf00276494
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control vol. 36 1228–1240 (1991) – 10.1109/9.100932
- Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM Journal on Control and Optimization vol. 37 1848–1864 (1999) – 10.1137/s0363012997317478
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1987). doi:10.1007/bfb0042858 – 10.1007/bfb0042858
- Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
- maschke, port-controlled hamiltonian systems: modelling origins and system theoretic properties. Proc 2nd IFAC Symp Nonlinear Control Systems (1992)
- kushner, Stochastic Stability and Control (1967)
- Misawa, T. Conserved Quantities and Symmetries Related to Stochastic Dynamical Systems. Annals of the Institute of Statistical Mathematics vol. 51 779–802 (1999) – 10.1023/a:1004095516648
- Misawa, T. Conserved quantities and symmetry for stochastic dynamical systems. Physics Letters A vol. 195 185–189 (1994) – 10.1016/0375-9601(94)90150-3
- ikeda, Stochastic Differential Equations and Diffusion Processes (1989)
- van der schaft, mathematical modeling of constrained hamiltonian systems. Proc 3rd IFAC Symp Nonlinear Control Systems (1995)
- Bucy, R. S. Stability and positive supermartingales. Journal of Differential Equations vol. 1 151–155 (1965) – 10.1016/0022-0396(65)90016-1
- Gaeta, G. & Quintero, N. R. Lie-point symmetries and stochastic differential equations. Journal of Physics A: Mathematical and General vol. 32 8485–8505 (1999) – 10.1088/0305-4470/32/48/310