Robust Voltage Regulation for DC Microgrids via Passivity-Based Sliding Mode Control
Authors
Edoardo Vacchini, Michele Cucuzzella, Pablo Borja, Antonella Ferrara
Abstract
This paper proposes a decentralized sliding mode control approach to the voltage regulation problem in a DC microgrid consisting of distributed generation units interconnected with each other through resistive-inductive power lines and supplying unknown nonlinear loads. In particular, the port-Hamiltonian structure of the system suggests the design of a suitable sliding manifold such that the system on this manifold exhibits desired passivity properties. This approach simplifies the control design and relaxes some restrictive assumptions required by other controllers proposed in the literature, while offering satisfactory performance.
Citation
- Journal: 2024 17th International Workshop on Variable Structure Systems (VSS)
- Year: 2024
- Volume:
- Issue:
- Pages: 273–278
- Publisher: IEEE
- DOI: 10.1109/vss61690.2024.10753420
BibTeX
@inproceedings{Vacchini_2024,
title={{Robust Voltage Regulation for DC Microgrids via Passivity-Based Sliding Mode Control}},
DOI={10.1109/vss61690.2024.10753420},
booktitle={{2024 17th International Workshop on Variable Structure Systems (VSS)}},
publisher={IEEE},
author={Vacchini, Edoardo and Cucuzzella, Michele and Borja, Pablo and Ferrara, Antonella},
year={2024},
pages={273--278}
}
References
- AL-Nussairi, M. Kh., Bayindir, R., Padmanaban, S., Mihet-Popa, L. & Siano, P. Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques. Energies vol. 10 1656 (2017) – 10.3390/en10101656
- Singh, S., Gautam, A. R. & Fulwani, D. Constant power loads and their effects in DC distributed power systems: A review. Renewable and Sustainable Energy Reviews vol. 72 407–421 (2017) – 10.1016/j.rser.2017.01.027
- Jeeninga, M., De Persis, C. & van der Schaft, A. DC Power Grids With Constant-Power Loads—Part II: Nonnegative Power Demands, Conditions for Feasibility, and High-Voltage Solutions. IEEE Transactions on Automatic Control vol. 68 18–30 (2023) – 10.1109/tac.2022.3176808
- Dragicevic, T., Lu, X., Vasquez, J. & Guerrero, J. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Transactions on Power Electronics 1–1 (2015) doi:10.1109/tpel.2015.2478859 – 10.1109/tpel.2015.2478859
- Meng, L. et al. Review on Control of DC Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics 1–1 (2017) doi:10.1109/jestpe.2017.2690219 – 10.1109/jestpe.2017.2690219
- Ferrara, A., Incremona, G. P. & Cucuzzella, M. Advanced and Optimization Based Sliding Mode Control: Theory and Applications. (2019) doi:10.1137/1.9781611975840 – 10.1137/1.9781611975840
- Utkin, V. I. Sliding Modes in Control and Optimization. (Springer Berlin Heidelberg, 1992). doi:10.1007/978-3-642-84379-2 – 10.1007/978-3-642-84379-2
- Cucuzzella, M. et al. A Robust Consensus Algorithm for Current Sharing and Voltage Regulation in DC Microgrids. IEEE Transactions on Control Systems Technology vol. 27 1583–1595 (2019) – 10.1109/tcst.2018.2834878
- Trip, S., Cucuzzella, M., De Persis, C., Ferrara, A. & Scherpen, J. M. A. Robust load frequency control of nonlinear power networks. International Journal of Control vol. 93 346–359 (2018) – 10.1080/00207179.2018.1557338
- Koshkouei, A. J. Passivity‐based sliding mode control for nonlinear systems. International Journal of Adaptive Control and Signal Processing vol. 22 859–874 (2008) – 10.1002/acs.1028
- Liu, W. & Wang, Y. Passivity-Based Sliding Mode Control for Lur’e Singularly Perturbed Time-Delay Systems with Input Nonlinearity. Circuits, Systems, and Signal Processing vol. 41 6007–6030 (2022) – 10.1007/s00034-022-02086-4
- Fujimoto, K., Sakata, N., Maruta, I. & Ferguson, J. A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 5 839–844 (2021) – 10.1109/lcsys.2020.3005327
- Fujimoto, K., Baba, T., Sakata, N. & Maruta, I. A Passivity-Based Sliding Mode Controller for a Class of Electro-Mechanical Systems. IEEE Control Systems Letters vol. 6 1208–1213 (2022) – 10.1109/lcsys.2021.3089541
- Zhao, J. & Dörfler, F. Distributed control and optimization in DC microgrids. Automatica vol. 61 18–26 (2015) – 10.1016/j.automatica.2015.07.015
- Strehle, F., Pfeifer, M., Malan, A. J., Krebs, S. & Hohmann, S. A Scalable Port-Hamiltonian Approach to Plug-and-Play Voltage Stabilization in DC Microgrids. 2020 IEEE Conference on Control Technology and Applications (CCTA) 787–794 (2020) doi:10.1109/ccta41146.2020.9206323 – 10.1109/ccta41146.2020.9206323
- Sadabadi, M. S., Shafiee, Q. & Karimi, A. Plug-and-Play Robust Voltage Control of DC Microgrids. IEEE Transactions on Smart Grid vol. 9 6886–6896 (2018) – 10.1109/tsg.2017.2728319
- Kosaraju, K. C., Cucuzzella, M., Scherpen, J. M. A. & Pasumarthy, R. Differentiation and Passivity for Control of Brayton–Moser Systems. IEEE Transactions on Automatic Control vol. 66 1087–1101 (2021) – 10.1109/tac.2020.2994317
- Machado, J. E. et al. An Adaptive Observer-Based Controller Design for Active Damping of a DC Network With a Constant Power Load. IEEE Transactions on Control Systems Technology vol. 29 2312–2324 (2021) – 10.1109/tcst.2020.3037859
- De Persis, C., Weitenberg, E. R. A. & Dörfler, F. A power consensus algorithm for DC microgrids. Automatica vol. 89 364–375 (2018) – 10.1016/j.automatica.2017.12.026
- Monshizadeh, P., Machado, J. E., Ortega, R. & van der Schaft, A. Power-controlled Hamiltonian systems: Application to electrical systems with constant power loads. Automatica vol. 109 108527 (2019) – 10.1016/j.automatica.2019.108527
- Ferguson, J., Cucuzzella, M. & Scherpen, J. M. A. Exponential Stability and Local ISS for DC Networks. IEEE Control Systems Letters vol. 5 893–898 (2021) – 10.1109/lcsys.2020.3007222
- Nahata, P., Soloperto, R., Tucci, M., Martinelli, A. & Ferrari-Trecate, G. A passivity-based approach to voltage stabilization in DC microgrids with ZIP loads. Automatica vol. 113 108770 (2020) – 10.1016/j.automatica.2019.108770
- Ferguson, J., Cucuzzella, M. & Scherpen, J. M. A. Increasing the region of attraction in DC microgrids. Automatica vol. 151 110883 (2023) – 10.1016/j.automatica.2023.110883
- Cucuzzella, M., Kosaraju, K. C. & Scherpen, J. M. A. Voltage Control of DC Microgrids: Robustness for Unknown ZIP-Loads. IEEE Control Systems Letters vol. 7 139–144 (2023) – 10.1109/lcsys.2022.3187925
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Simpson-Porco, J. W. Equilibrium-Independent Dissipativity With Quadratic Supply Rates. IEEE Transactions on Automatic Control vol. 64 1440–1455 (2019) – 10.1109/tac.2018.2838664
- Kawano, Y., Kosaraju, K. C. & Scherpen, J. M. A. Krasovskii and Shifted Passivity-Based Control. IEEE Transactions on Automatic Control vol. 66 4926–4932 (2021) – 10.1109/tac.2020.3040252
- Wu, C., van der Schaft, A. & Chen, J. Stabilization of Port-Hamiltonian Systems Based on Shifted Passivity via Feedback. IEEE Transactions on Automatic Control vol. 66 2219–2226 (2021) – 10.1109/tac.2020.3005156
- Ortega, R., Romero, J. G., Borja, P. & Donaire, A. PID Passivity‐Based Control of Nonlinear Systems with Applications. (2021) doi:10.1002/9781119694199 – 10.1002/9781119694199
- Borja, P., Ortega, R. & Scherpen, J. M. A. New Results on Stabilization of Port-Hamiltonian Systems via PID Passivity-Based Control. IEEE Transactions on Automatic Control vol. 66 625–636 (2021) – 10.1109/tac.2020.2986731