A Scalable Port-Hamiltonian Approach to Plug-and-Play Voltage Stabilization in DC Microgrids
Authors
Felix Strehle, Martin Pfeifer, Albertus Johannes Malan, Stefan Krebs, Soren Hohmann
Abstract
One of the major challenges of voltage stabilization in converter-based DC microgrids are the multiple interacting units displaying intermittent supply behavior. In this paper, we address this by a decentralized scalable, plug-and-play voltage controller for voltage-source converters (VSCs) at primary level. In contrast to existing approaches, we follow a systematic and constructive design based on port-Hamiltonian systems (PHSs) which does neither require the heuristic proposition of a Lyapunov function nor the computation of auxilliary variables such as time-derivatives. By employing the Hamiltonian naturally obtained from the PHS approach as Lyapunov function and using the modularity of passive systems, we provide sufficient conditions under which the designed VSC controllers achieve microgrid-wide asymptotic voltage stability. Integral action (IA), which preserves the passive PHS structure, robustifies the design against unknown disturbances and ensures zero voltage errors in the steady-state. Numerical simulations illustrate the functionality of the proposed voltage controller.
Citation
- Journal: 2020 IEEE Conference on Control Technology and Applications (CCTA)
- Year: 2020
- Volume:
- Issue:
- Pages: 787–794
- Publisher: IEEE
- DOI: 10.1109/ccta41146.2020.9206323
BibTeX
@inproceedings{Strehle_2020,
title={{A Scalable Port-Hamiltonian Approach to Plug-and-Play Voltage Stabilization in DC Microgrids}},
DOI={10.1109/ccta41146.2020.9206323},
booktitle={{2020 IEEE Conference on Control Technology and Applications (CCTA)}},
publisher={IEEE},
author={Strehle, Felix and Pfeifer, Martin and Malan, Albertus Johannes and Krebs, Stefan and Hohmann, Soren},
year={2020},
pages={787--794}
}
References
- Sepulchre, R., Janković, M. & Kokotović, P. V. Constructive Nonlinear Control. Communications and Control Engineering (Springer London, 1997). doi:10.1007/978-1-4471-0967-9 – 10.1007/978-1-4471-0967-9
- Cucuzzella, M., Kosaraju, K. C. & Scherpen, J. M. A. Distributed Passivity-Based Control of DC Microgrids. 2019 American Control Conference (ACC) 652–657 (2019) doi:10.23919/acc.2019.8814756 – 10.23919/acc.2019.8814756
- Nahata, P., Soloperto, R., Tucci, M., Martinelli, A. & Ferrari-Trecate, G. A passivity-based approach to voltage stabilization in DC microgrids with ZIP loads. Automatica vol. 113 108770 (2020) – 10.1016/j.automatica.2019.108770
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- khalil, Nonlinear Systems (2002)
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- machowski, Power System Dynamics Stability and Control (2008)
- kundur, Power System Stability and Control (1994)
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica vol. 74 135–150 (2016) – 10.1016/j.automatica.2016.07.036
- meng, Review on Control of DC Microgrids and Multiple Microgrid Clusters. IEEE Journal of Emerging and Selected Topics in Power Electronics (2017)
- dragicevic, DC Microgrids - Part I: A Review of Control Strategies and Stabilization Techniques. Power Electronics IEEE Transactions on 31 (2016)
- Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuna, L. G. & Castilla, M. Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Transactions on Industrial Electronics vol. 58 158–172 (2011) – 10.1109/tie.2010.2066534
- Tucci, M., Riverso, S. & Ferrari-Trecate, G. Line-Independent Plug-and-Play Controllers for Voltage Stabilization in DC Microgrids. IEEE Transactions on Control Systems Technology vol. 26 1115–1123 (2018) – 10.1109/tcst.2017.2695167
- Sadabadi, M. S., Shafiee, Q. & Karimi, A. Plug-and-Play Robust Voltage Control of DC Microgrids. IEEE Transactions on Smart Grid vol. 9 6886–6896 (2018) – 10.1109/tsg.2017.2728319
- Cucuzzella, M., Lazzari, R., Kawano, Y., Kosaraju, K. C. & Scherpen, J. M. A. Robust Passivity-Based Control of Boost Converters in DC Microgrids⋆. 2019 IEEE 58th Conference on Decision and Control (CDC) (2019) doi:10.1109/cdc40024.2019.9029657 – 10.1109/cdc40024.2019.9029657
- Tucci, M., Riverso, S., Vasquez, J. C., Guerrero, J. M. & Ferrari-Trecate, G. A Decentralized Scalable Approach to Voltage Control of DC Islanded Microgrids. IEEE Transactions on Control Systems Technology vol. 24 1965–1979 (2016) – 10.1109/tcst.2016.2525001
- Cucuzzella, M. et al. A Robust Consensus Algorithm for Current Sharing and Voltage Regulation in DC Microgrids. IEEE Transactions on Control Systems Technology vol. 27 1583–1595 (2019) – 10.1109/tcst.2018.2834878
- Kotyczka, P. Local linear dynamics assignment in IDA-PBC. Automatica vol. 49 1037–1044 (2013) – 10.1016/j.automatica.2013.01.028