Representing the dissipation of infinite-dimensional linear port-Hamiltonian systems
Authors
Abstract
It is well known that linear and non-linear dissipative port-Hamiltonian systems in finite dimensions admit an energy balance, relating the energy increase in the system with the supplied energy and the dissipated energy. The integrand in the dissipation term is then a function of the state variable. In this note, we answer the question of when this is possible for linear port-Hamiltonian systems in infinite dimensions.
Keywords
Port-Hamiltonian systems; infinite-dimensional systems; dissipation; real part; domain
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 304–308
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.298
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Philipp_2024,
title={{Representing the dissipation of infinite-dimensional linear port-Hamiltonian systems}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.298},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Philipp, Friedrich M.},
year={2024},
pages={304--308}
}
References
- Angerer, M., Music, S. & Hirche, S. Port-Hamiltonian based control for human-robot team interaction. 2017 IEEE International Conference on Robotics and Automation (ICRA) 2292–2299 (2017) doi:10.1109/icra.2017.7989264 – 10.1109/icra.2017.7989264
- Arlinskiĭ, Y. & Tretter, C. Everything is possible for the domain intersection dom T ∩ dom T⁎. Advances in Mathematics vol. 374 107383 (2020) – 10.1016/j.aim.2020.107383
- Augner, B. Well-Posedness and Stability of Infinite-Dimensional Linear Port-Hamiltonian Systems with Nonlinear Boundary Feedback. SIAM Journal on Control and Optimization vol. 57 1818–1844 (2019) – 10.1137/15m1024901
- Engel, (2000)
- Jacob, B. & Kaiser, J. T. On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 3 661–666 (2019) – 10.1109/lcsys.2019.2916814
- Jacob, (2012)
- Jäschke, J., Skrepek, N. & Ehrhardt, M. Mixed-dimensional geometric coupling of port-Hamiltonian systems. Applied Mathematics Letters vol. 137 108508 (2023) – 10.1016/j.aml.2022.108508
- Kato, (1995)
- Philipp, F., Schaller, M., Faulwasser, T., Maschke, B. & Worthmann, K. Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems. IFAC-PapersOnLine vol. 54 155–160 (2021) – 10.1016/j.ifacol.2021.11.071
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Schaller, M. et al. Energy-optimal control of adaptive structures. at - Automatisierungstechnik vol. 72 107–119 (2024) – 10.1515/auto-2023-0090
- Skrepek, N. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. Evolution Equations & Control Theory vol. 10 965 (2021) – 10.3934/eect.2020098
- Staffans, (2005)
- Tõnso, M., Kaparin, V. & Belikov, J. Port-Hamiltonian framework in power systems domain: A survey. Energy Reports vol. 10 2918–2930 (2023) – 10.1016/j.egyr.2023.09.077
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002