Mixed-dimensional geometric coupling of port-Hamiltonian systems
Authors
Jens Jäschke, Nathanael Skrepek, Matthias Ehrhardt
Abstract
We propose a new interconnection relation for infinite-dimensional port-Hamiltonian systems that enables the coupling of ports with different spatial dimensions by integrating over the surplus dimensions. To show the practical relevance, we apply this interconnection to a model system of an actively cooled gas turbine blade. We also show that this interconnection relation behaves well with respect to a discretization in finite element space, ensuring its usability for practical applications.
Keywords
Port-Hamiltonian system; Coupled systems; Geometric coupling; Infinite dimensional systems
Citation
- Journal: Applied Mathematics Letters
- Year: 2023
- Volume: 137
- Issue:
- Pages: 108508
- Publisher: Elsevier BV
- DOI: 10.1016/j.aml.2022.108508
BibTeX
@article{J_schke_2023,
title={{Mixed-dimensional geometric coupling of port-Hamiltonian systems}},
volume={137},
ISSN={0893-9659},
DOI={10.1016/j.aml.2022.108508},
journal={Applied Mathematics Letters},
publisher={Elsevier BV},
author={Jäschke, Jens and Skrepek, Nathanael and Ehrhardt, Matthias},
year={2023},
pages={108508}
}
References
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- (2009)
- Jacob, (2012)
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- Jäschke, J., Ehrhardt, M., Günther, M. & Jacob, B. A port-Hamiltonian formulation of coupled heat transfer. Mathematical and Computer Modelling of Dynamical Systems vol. 28 78–94 (2022) – 10.1080/13873954.2022.2038637
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine vol. 52 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Meitner, (1990)
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3