Port‐Hamiltonian representation for pdes with second‐order derivatives in the energy density
Authors
Markus Schöberl, Kurt Schlacher
Abstract
In this contribution we consider a port‐Hamiltonian setting for partial differential equations. A crucial property of this system class is the property to be able to link a power balance relation to the structure of the equations. However, one has to take into account also the effects of energy flows via the boundary. This is straightforward when the Hamiltonian depends on derivative variables of first order, e.g. by using integration by parts. If second‐order derivatives appear then integration by parts cannot be used without due care, thus we suggest an approach by using the so‐called Cartan‐form. We visualize the derivation of a power balance relation by using the Kirchhoff plate as an example. (© 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Citation
- Journal: PAMM
- Year: 2016
- Volume: 16
- Issue: 1
- Pages: 19–22
- Publisher: Wiley
- DOI: 10.1002/pamm.201610006
BibTeX
@article{Sch_berl_2016,
title={{Port‐Hamiltonian representation for pdes with second‐order derivatives in the energy density}},
volume={16},
ISSN={1617-7061},
DOI={10.1002/pamm.201610006},
number={1},
journal={PAMM},
publisher={Wiley},
author={Schöberl, Markus and Schlacher, Kurt},
year={2016},
pages={19--22}
}
References
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Maschke, B. & van der Schaft, A. 4 Compositional Modelling of Distributed-Parameter Systems. Lecture Notes in Control and Information Sciences 115–154 (2005) doi:10.1007/11334774_4 – 10.1007/11334774_4
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems I. Modeling. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3762-3767 Vol.4 (2004) doi:10.1109/cdc.2004.1429324 – 10.1109/cdc.2004.1429324
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3768-3773 Vol.4 (2004) doi:10.1109/cdc.2004.1429325 – 10.1109/cdc.2004.1429325
- Schlacher, K. Mathematical modeling for nonlinear control: a Hamiltonian approach. Mathematics and Computers in Simulation 79, 829–849 (2008) – 10.1016/j.matcom.2008.02.011
- Schöberl, M. & Siuka, A. On the port-Hamiltonian representation of systems described by partial differential equations. IFAC Proceedings Volumes 45, 1–6 (2012) – 10.3182/20120829-3-it-4022.00001
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Trans. Automat. Contr. 58, 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica 50, 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- Schöberl, M. & Schlacher, K. Port-Hamiltonian formulation for Higher-order PDEs. IFAC-PapersOnLine 48, 244–249 (2015) – 10.1016/j.ifacol.2015.10.247
- Saunders, D. J. The Geometry of Jet Bundles. (1989) doi:10.1017/cbo9780511526411 – 10.1017/cbo9780511526411
- Giachetta, G., Mangiarotti, L. & Sardanashvily, G. New Lagrangian and Hamiltonian Methods in Field Theory. (1997) doi:10.1142/2199 – 10.1142/2199
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1986). doi:10.1007/978-1-4684-0274-2 – 10.1007/978-1-4684-0274-2