Authors

Thai Duong, Abdullah Altawaitan, Jason Stanley, Nikolay Atanasov

Abstract

Accurate models of robot dynamics are critical for safe and stable control and generalization to novel operational conditions. Hand-designed models, however, may be insufficiently accurate, even after careful parameter tuning. This motivates the use of machine learning techniques to approximate the robot dynamics over a training set of state-control trajectories. The dynamics of many robots are described in terms of their generalized coordinates on a matrix Lie group, e.g., on \( ext{SE}(3) \) for ground, aerial, and underwater vehicles, and generalized velocity, and satisfy conservation of energy principles. This article proposes a port-Hamiltonian formulation over a Lie group of the structure of a neural ordinary differential equation (ODE) network to approximate the robot dynamics. In contrast to a black-box ODE network, our formulation embeds energy conservation principle and Lie group’s constraints in the dynamics model and explicitly accounts for energy-dissipation effect such as friction and drag forces in the dynamics model. We develop energy shaping and damping injection control for the learned, potentially under-actuated Hamiltonian dynamics to enable a unified approach for stabilization and trajectory tracking with various robot platforms.

Citation

  • Journal: IEEE Transactions on Robotics
  • Year: 2024
  • Volume: 40
  • Issue:
  • Pages: 3695–3715
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/tro.2024.3428433

BibTeX

@article{Duong_2024,
  title={{Port-Hamiltonian Neural ODE Networks on Lie Groups for Robot Dynamics Learning and Control}},
  volume={40},
  ISSN={1941-0468},
  DOI={10.1109/tro.2024.3428433},
  journal={IEEE Transactions on Robotics},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Duong, Thai and Altawaitan, Abdullah and Stanley, Jason and Atanasov, Nikolay},
  year={2024},
  pages={3695--3715}
}

Download the bib file

References

  • Ljung, L. System Identification. Wiley Encyclopedia of Electrical and Electronics Engineering (1999) doi:10.1002/047134608x.w1046 – 10.1002/047134608x.w1046
  • Nguyen-Tuong, D. & Peters, J. Model learning for robot control: a survey. Cognitive Processing vol. 12 319–340 (2011) – 10.1007/s10339-011-0404-1
  • Deisenroth, PILCO: A model-based and data-efficient approach to policy search. Proc. Int. Conf. Mach. Learn. (2011)
  • Williams, G. et al. Information theoretic MPC for model-based reinforcement learning. 2017 IEEE International Conference on Robotics and Automation (ICRA) 1714–1721 (2017) doi:10.1109/icra.2017.7989202 – 10.1109/icra.2017.7989202
  • Raissi, Multistep neural networks for data-driven discovery of nonlinear dynamical systems. (2018)
  • Chua, Deep reinforcement learning in a handful of trials using probabilistic dynamics models. Proc. Adv. Neural Inf. Process. Syst. (2018)
  • Lutter, M. & Peters, J. Combining physics and deep learning to learn continuous-time dynamics models. The International Journal of Robotics Research vol. 42 83–107 (2023) – 10.1177/02783649231169492
  • Gupta, A general framework for structured learning of mechanical systems. (2019)
  • Cranmer, Lagrangian neural networks. Proc. ICLR Workshop Integration Deep Neural Models Differ. Equ. (2020)
  • Greydanus, Hamiltonian neural networks. Proc. Adv. Neural Inf. Process. Syst. (2019)
  • Chen, Symplectic recurrent neural networks. Proc. Int. Conf. Learn. Representations (2020)
  • Roehrl, M. A., Runkler, T. A., Brandtstetter, V., Tokic, M. & Obermayer, S. Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics. IFAC-PapersOnLine vol. 53 9195–9200 (2020) – 10.1016/j.ifacol.2020.12.2182
  • Lu, ModLaNets: Learning generalisable dynamics via modularity and physical inductive bias. Proc. Int. Conf. Mach. Learn. (2022)
  • Neary, Compositional learning of dynamical system models using port-Hamiltonian neural networks. Proc. Learn. Dyn. Control Conf. (2023)
  • Sanchez-Gonzalez, Graph networks as learnable physics engines for inference and control. Proc. Int. Conf. Mach. Learn. (2018)
  • Lutter, Deep lagrangian networks: Using physics as model prior for deep learning. Proc. Int. Conf. Learn. Representations (2018)
  • Hall, B. C. Lie Groups, Lie Algebras, and Representations. Graduate Texts in Mathematics 333–366 (2013) doi:10.1007/978-1-4614-7116-5_16 – 10.1007/978-1-4614-7116-5_16
  • Lynch, K. M. & Park, F. C. Modern Robotics. (2017) doi:10.1017/9781316661239 – 10.1017/9781316661239
  • Falorsi, Neural ordinary differential equations on manifolds. (2020)
  • Elamvazhuthi, Learning on manifolds: Universal approximations properties using geometric controllability conditions for neural ODEs. Proc. Learn. Dyn. Control Conf. (2023)
  • Lou, Neural manifold ordinary differential equations. Proc. Adv. Neural Inf. Process. Syst. (2020)
  • Wotte, Y. P., Califano, F. & Stramigioli, S. Optimal potential shaping on SE(3) via neural ordinary differential equations on Lie groups. The International Journal of Robotics Research vol. 43 2221–2244 (2024) – 10.1177/02783649241256044
  • Lurie, A. I. Analytical Mechanics. (Springer Berlin Heidelberg, 2002). doi:10.1007/978-3-540-45677-3 – 10.1007/978-3-540-45677-3
  • Holm, D. D. Geometric Mechanics. (IMPERIAL COLLEGE PRESS, 2008). doi:10.1142/p557 – 10.1142/p557
  • Bertalan, T., Dietrich, F., Mezić, I. & Kevrekidis, I. G. On learning Hamiltonian systems from data. Chaos: An Interdisciplinary Journal of Nonlinear Science vol. 29 (2019) – 10.1063/1.5128231
  • Finzi, Simplifying Hamiltonian and Lagrangian neural networks via explicit constraints. Proc. Adv. Neural Inf. Process. Syst. (2020)
  • Zhong, Symplectic ODE-Net: Learning Hamiltonian dynamics with control. Proc. Int. Conf. Learn. Representations (2019)
  • Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems. ACM Computing Surveys vol. 55 1–37 (2022) – 10.1145/3514228
  • Maciejewski, A. J. Hamiltonian formalism for Euler parameters. Celestial Mechanics vol. 37 47–57 (1985) – 10.1007/bf01230340
  • Shivarama, R. & Fahrenthold, E. P. Hamilton’s Equations With Euler Parameters for Rigid Body Dynamics Modeling. Journal of Dynamic Systems, Measurement, and Control vol. 126 124–130 (2004) – 10.1115/1.1649977
  • Chen, Neural ordinary differential equations. Proc. Adv. Neural Inf. Process. Syst. (2018)
  • Duong, T. & Atanasov, N. Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For Dynamics Learning and Control. Robotics: Science and Systems XVII (2021) doi:10.15607/rss.2021.xvii.086 – 10.15607/rss.2021.xvii.086
  • Lee, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds (2017)
  • Zhong, Dissipative SymODEN: Encoding Hamiltonian dynamics with dissipation and control into deep learning. Proc. ICLR Workshop Integration Deep Neural Models Differ. Equ. (2020)
  • Song, Y., Romero, A., Müller, M., Koltun, V. & Scaramuzza, D. Reaching the limit in autonomous racing: Optimal control versus reinforcement learning. Science Robotics vol. 8 (2023) – 10.1126/scirobotics.adg1462
  • Salzmann, T. et al. Real-Time Neural MPC: Deep Learning Model Predictive Control for Quadrotors and Agile Robotic Platforms. IEEE Robotics and Automation Letters vol. 8 2397–2404 (2023) – 10.1109/lra.2023.3246839
  • Scaramuzza, D. & Kaufmann, E. Learning Agile, Vision-Based Drone Flight: From Simulation to Reality. Springer Proceedings in Advanced Robotics 11–18 (2023) doi:10.1007/978-3-031-25555-7_2 – 10.1007/978-3-031-25555-7_2
  • Loquercio, A. et al. Learning high-speed flight in the wild. Science Robotics vol. 6 (2021) – 10.1126/scirobotics.abg5810
  • Ibarz, J. et al. How to train your robot with deep reinforcement learning: lessons we have learned. The International Journal of Robotics Research vol. 40 698–721 (2021) – 10.1177/0278364920987859
  • Nghiem, T. X. et al. Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems. 2023 American Control Conference (ACC) 3735–3750 (2023) doi:10.23919/acc55779.2023.10155901 – 10.23919/acc55779.2023.10155901
  • Djeumou, Neural networks with physics-informed architectures and constraints for dynamical systems modeling. Proc. Learn. Dyn. Control Conf. (2022)
  • Thorpe, A. J., Neary, C., Djeumou, F., K. Oishi, M. M. & Topcu, U. Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge with Data-Driven Control. 2024 American Control Conference (ACC) 3130–3137 (2024) doi:10.23919/acc60939.2024.10644707 – 10.23919/acc60939.2024.10644707
  • Ruthotto, L. & Haber, E. Deep Neural Networks Motivated by Partial Differential Equations. Journal of Mathematical Imaging and Vision vol. 62 352–364 (2019) – 10.1007/s10851-019-00903-1
  • Wang, Incorporating symmetry into deep dynamics models for improved generalization. Proc. Int. Conf. Learn. Representations (2021)
  • Lutter, M., Listmann, K. & Peters, J. Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 7718–7725 (2019) doi:10.1109/iros40897.2019.8968268 – 10.1109/iros40897.2019.8968268
  • Beckers, T., Seidman, J., Perdikaris, P. & Pappas, G. J. Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior. 2022 IEEE 61st Conference on Decision and Control (CDC) 1447–1453 (2022) doi:10.1109/cdc51059.2022.999273310.1109/cdc51059.2022.9992733
  • Beckers, T. Data-Driven Bayesian Control of Port-Hamiltonian Systems. 2023 62nd IEEE Conference on Decision and Control (CDC) (2023) doi:10.1109/cdc49753.2023.10384219 – 10.1109/cdc49753.2023.10384219
  • Leimkuhler, Simulating Hamiltonian Dynamics (2004)
  • Toth, Hamiltonian generative networks. Proc. Int. Conf. Learn. Representations (2019)
  • Mason, Learning interpretable dynamics from images of a freely rotating 3D rigid body. Proc. Third Symp. Knowl. guided Mach. Learn. (2022)
  • van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014)10.1561/2600000002
  • Marsden, J. E. & West, M. Discrete mechanics and variational integrators. Acta Numerica vol. 10 357–514 (2001) – 10.1017/s096249290100006x
  • Havens, Forced variational integrator networks for prediction and control of mechanical systems. Proc. Learn. Dyn. Control (2021)
  • Duruisseaux, Lie group forced variational integrator networks for learning and control of robot systems. Proc. Learn. Dyn. Control Conf. (2023)
  • Chen, Data-driven prediction of general Hamiltonian dynamics via learning exactly-symplectic maps. Proc. Int. Conf. Mach. Learn. (2021)
  • So, Data-driven discovery of non-newtonian astronomy via learning non-euclidean hamiltonian. Proc. ICML Mach. Learn. Phys. Sci. Workshop (2022)
  • Borrelli, F., Bemporad, A. & Morari, M. Predictive Control for Linear and Hybrid Systems. (2017) doi:10.1017/9781139061759 – 10.1017/9781139061759
  • Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
  • Acosta, J. A., Sanchez, M. I. & Ollero, A. Robust control of underactuated Aerial Manipulators via IDA-PBC. 53rd IEEE Conference on Decision and Control 673–678 (2014) doi:10.1109/cdc.2014.7039459 – 10.1109/cdc.2014.7039459
  • Cieza, O. B. & Reger, J. IDA-PBC for Underactuated Mechanical Systems in Implicit Port-Hamiltonian Representation. 2019 18th European Control Conference (ECC) (2019) doi:10.23919/ecc.2019.879599410.23919/ecc.2019.8795994
  • Wang, Z. & Goldsmith, P. Modified energy-balancing-based control for the tracking problem. IET Control Theory & Applications vol. 2 310–322 (2008) – 10.1049/iet-cta:20070124
  • Souza, C., Raffo, G. V. & Castelan, E. B. Passivity Based Control of a Quadrotor UAV. IFAC Proceedings Volumes vol. 47 3196–3201 (2014) – 10.3182/20140824-6-za-1003.02335
  • Furieri, Distributed neural network control with dependability guarantees: A compositional port-Hamiltonian approach. Proc. Learn. Dyn. Control Conf. (2022)
  • Galimberti, C. L., Furieri, L., Xu, L. & Ferrari-Trecate, G. Hamiltonian Deep Neural Networks Guaranteeing Nonvanishing Gradients by Design. IEEE Transactions on Automatic Control vol. 68 3155–3162 (2023) – 10.1109/tac.2023.3239430
  • Sebastián, E., Duong, T., Atanasov, N., Montijano, E. & Sagüés, C. LEMURS: Learning Distributed Multi-Robot Interactions. 2023 IEEE International Conference on Robotics and Automation (ICRA) 7713–7719 (2023) doi:10.1109/icra48891.2023.1016132810.1109/icra48891.2023.10161328
  • Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1994). doi:10.1007/978-1-4612-2682-6 – 10.1007/978-1-4612-2682-6
  • Zhou, Y., Barnes, C., Lu, J., Yang, J. & Li, H. On the Continuity of Rotation Representations in Neural Networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 5738–5746 (2019) doi:10.1109/cvpr.2019.00589 – 10.1109/cvpr.2019.00589
  • Barfoot, T. D. State Estimation for Robotics. (2017) doi:10.1017/9781316671528 – 10.1017/9781316671528
  • Hemingway, E. G. & O’Reilly, O. M. Perspectives on Euler angle singularities, gimbal lock, and the orthogonality of applied forces and applied moments. Multibody System Dynamics vol. 44 31–56 (2018) – 10.1007/s11044-018-9620-0
  • Faessler, M., Franchi, A. & Scaramuzza, D. Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories. IEEE Robotics and Automation Letters vol. 3 620–626 (2018) – 10.1109/lra.2017.2776353
  • Forni, P., Jeltsema, D. & Lopes, G. A. D. Port-Hamiltonian Formulation of Rigid-Body Attitude Control. IFAC-PapersOnLine vol. 48 164–169 (2015)10.1016/j.ifacol.2015.10.233
  • Rashad, R., Califano, F. & Stramigioli, S. Port-Hamiltonian Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-Hovering. IEEE Robotics and Automation Letters vol. 4 4378–4385 (2019)10.1109/lra.2019.2932864
  • Delmerico, J. & Scaramuzza, D. A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2502–2509 (2018) doi:10.1109/icra.2018.8460664 – 10.1109/icra.2018.8460664
  • Mohamed, S. A. S. et al. A Survey on Odometry for Autonomous Navigation Systems. IEEE Access vol. 7 97466–97486 (2019) – 10.1109/access.2019.2929133
  • Paszke, PyTorch: An imperative style, high-performance deep learning library. Proc. Adv. Neural Inf. Process. Syst. (2019)
  • Dormand, J. R. & Prince, P. J. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics vol. 6 19–26 (1980) – 10.1016/0771-050x(80)90013-3
  • Lienen, torchode: A parallel ODE solver for PyTorch. Proc. Symbiosis Deep Learn. Differ. Equ. II (2022)
  • Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. & Zanna, A. Lie-group methods. Acta Numerica vol. 9 215–365 (2000) – 10.1017/s0962492900002154
  • Lee, T., Leok, M. & McClamroch, N. H. Geometric tracking control of a quadrotor UAV on SE(3). 49th IEEE Conference on Decision and Control (CDC) 5420–5425 (2010) doi:10.1109/cdc.2010.5717652 – 10.1109/cdc.2010.5717652
  • Khalil, Nonlinear Systems (2002)
  • Panerati, Learning to fly: A PyBullet gym environment to learn the control of multiple nano-quadcopters. (2020)
  • Meier, L., Honegger, D. & Pollefeys, M. PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms. 2015 IEEE International Conference on Robotics and Automation (ICRA) 6235–6240 (2015) doi:10.1109/icra.2015.7140074 – 10.1109/icra.2015.7140074
  • Boumal, N. An Introduction to Optimization on Smooth Manifolds. (2023) doi:10.1017/9781009166164 – 10.1017/9781009166164
  • Arathoon, Coadjoint orbits of the special Euclidean group. (2015)