Data-Driven Bayesian Control of Port-Hamiltonian Systems
Authors
Abstract
Port-Hamiltonian theory is an established way to describe nonlinear physical systems widely used in various fields such as robotics, energy management, and mechanical engineering. This has led to considerable research interest in the control of Port-Hamiltonian systems, resulting in numerous model-based control techniques. However, the performance and stability of the closed-loop typically depend on the quality of the PH model, which is often difficult to obtain using first principles. We propose a Gaussian Processes (GP) based control approach for Port-Hamiltonian systems (GPC-PHS) by leveraging gathered data. The Bayesian characteristics of GPs enable the creation of a distribution encompassing all potential Hamiltonians instead of providing a singular point estimate. Using this uncertainty quantification, the proposed approach takes advantage of passivity-based robust control with interconnection and damping assignment to establish probabilistic stability guarantees.
Citation
- Journal: 2023 62nd IEEE Conference on Decision and Control (CDC)
- Year: 2023
- Volume:
- Issue:
- Pages:
- Publisher: IEEE
- DOI: 10.1109/cdc49753.2023.10384219
BibTeX
@inproceedings{Beckers_2023,
title={{Data-Driven Bayesian Control of Port-Hamiltonian Systems}},
DOI={10.1109/cdc49753.2023.10384219},
booktitle={{2023 62nd IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Beckers, Thomas},
year={2023}
}
References
- Derler, P., Lee, E. A. & Vincentelli, A. S. Modeling Cyber–Physical Systems. Proc. IEEE 100, 13–28 (2012) – 10.1109/jproc.2011.2160929
- Brosilow, Techniques of model-based control (2002)
- Yin, H., Varava, A. & Kragic, D. Modeling, learning, perception, and control methods for deformable object manipulation. Sci. Robot. 6, (2021) – 10.1126/scirobotics.abd8803
- Ikonen, E. & Najim, K. Advanced Process Identification and Control. (2001) doi:10.1201/9781482294699 – 10.1201/9781482294699
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control 10, 451–468 (2004) – 10.3166/ejc.10.451-468
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Lin, J., Divekar, N. V., Lv, G. & Gregg, R. D. Optimal Task-Invariant Energetic Control for a Knee-Ankle Exoskeleton. 2021 American Control Conference (ACC) 5029–5034 (2021) doi:10.23919/acc50511.2021.9483212 – 10.23919/acc50511.2021.9483212
- Beckers, T., Seidman, J., Perdikaris, P. & Pappas, G. J. Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior. 2022 IEEE 61st Conference on Decision and Control (CDC) 1447–1453 (2022) doi:10.1109/cdc51059.2022.9992733 – 10.1109/cdc51059.2022.9992733
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Trans. Automat. Contr. 61, 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Wang, Y., Feng, G. & Cheng, D. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica 43, 403–415 (2007) – 10.1016/j.automatica.2006.09.008
- Dirksz, D. A. & Scherp, J. M. A. Adaptive tracking control of fully actuated port-Hamiltonian mechanical systems. 2010 IEEE International Conference on Control Applications 1678–1683 (2010) doi:10.1109/cca.2010.5611301 – 10.1109/cca.2010.5611301
- Sprangers, O., Babuska, R., Nageshrao, S. P. & Lopes, G. A. D. Reinforcement Learning for Port-Hamiltonian Systems. IEEE Trans. Cybern. 45, 1017–1027 (2015) – 10.1109/tcyb.2014.2343194
- Fujimoto, K. & Sugie, T. Iterative learning control of hamiltonian systems: I/O based optimal control approach. IEEE Trans. Automat. Contr. 48, 1756–1761 (2003) – 10.1109/tac.2003.817908
- Fujimoto, On iterative learning control of nonholonomic Hamiltonian systems. Proc. 16th Symposium on Mathematical Theory of Networks and Systems (MTNS2004) (2004)
- Ryalat, M. & Laila, D. S. A Robust IDA-PBC Approach for Handling Uncertainties in Underactuated Mechanical Systems. IEEE Trans. Automat. Contr. 63, 3495–3502 (2018) – 10.1109/tac.2018.2797191
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning. (2005) doi:10.7551/mitpress/3206.001.0001 – 10.7551/mitpress/3206.001.0001
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Vu, N. M. T. & Lefèvre, L. A connection between optimal control and IDA-PBC design. IFAC-PapersOnLine 51, 205–210 (2018) – 10.1016/j.ifacol.2018.06.054
- Srinivas, N., Krause, A., Kakade, S. M. & Seeger, M. W. Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting. IEEE Trans. Inform. Theory 58, 3250–3265 (2012) – 10.1109/tit.2011.2182033
- Umlauft, J. & Hirche, S. Feedback Linearization Based on Gaussian Processes With Event-Triggered Online Learning. IEEE Trans. Automat. Contr. 65, 4154–4169 (2020) – 10.1109/tac.2019.2958840
- Plaza, Total energy shaping with neural interconnection and damping assignment-passivity based control. Learning for Dynamics and Control Conference (2022)
- Maithripala, D. H. S., Berg, J. M. & Dayawansa, W. P. Nonlinear dynamic output feedback stabilization of electrostatically actuated MEMS. 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) vol. 1 61–66 – 10.1109/cdc.2003.1272536