Hypocoercivity in Algebraically Constrained Partial Differential Equations with Application to Oseen Equations
Authors
Franz Achleitner, Anton Arnold, Volker Mehrmann
Abstract
The long-time behavior of solutions to different versions of Oseen equations of fluid flow on the 2D torus is analyzed using the concept of hypocoercivity. The considered models are isotropic Oseen equations where the viscosity acts uniformly in all directions and anisotropic Oseen-type equations with different viscosity directions. The hypocoercivity index is determined (if it exists) and it is shown that similar to the finite dimensional case of ordinary differential equations and differential-algebraic equations it characterizes its decay behavior.
Keywords
Hypocoercivity (index); Dissipative systems; Constrained PDEs; Oseen equation; Primary 34A30; Secondary 34C11; 47F06; 35E05
Citation
- Journal: Journal of Dynamics and Differential Equations
- Year: 2023
- Volume:
- Issue:
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s10884-023-10327-6
BibTeX
@article{Achleitner_2023,
title={{Hypocoercivity in Algebraically Constrained Partial Differential Equations with Application to Oseen Equations}},
ISSN={1572-9222},
DOI={10.1007/s10884-023-10327-6},
journal={Journal of Dynamics and Differential Equations},
publisher={Springer Science and Business Media LLC},
author={Achleitner, Franz and Arnold, Anton and Mehrmann, Volker},
year={2023}
}
References
- F Achleitner, Riv. Math. Univ. Parma (NS) (2015)
- Achleitner, F., Arnold, A. & Carlen, E. A. On Linear Hypocoercive BGK Models. Springer Proceedings in Mathematics & Statistics 1–37 (2016) doi:10.1007/978-3-319-32144-8_1 – 10.1007/978-3-319-32144-8_1
- Achleitner, F. et al. On multi-dimensional hypocoercive BGK models. Kinetic & Related Models vol. 11 953–1009 (2018) – 10.3934/krm.2018038
- Achleitner, F., Arnold, A. & Signorello, B. On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition. Springer Proceedings in Mathematics & Statistics 241–264 (2019) doi:10.1007/978-3-030-15096-9_6 – 10.1007/978-3-030-15096-9_6
- Achleitner, F., Arnold, A. & Carlen, E. A. The hypocoercivity index for the short time behavior of linear time-invariant ODE systems. Journal of Differential Equations vol. 371 83–115 (2023) – 10.1016/j.jde.2023.06.027
- Achleitner, F., Arnold, A. & Mehrmann, V. Hypocoercivity and controllability in linear semi‐dissipative Hamiltonian ordinary differential equations and differential‐algebraic equations. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik vol. 103 (2021) – 10.1002/zamm.202100171
- Achleitner, F., Arnold, A. & Mehrmann, V. Hypocoercivity and hypocontractivity concepts for linear dynamical systems. The Electronic Journal of Linear Algebra vol. 39 33–61 (2023) – 10.13001/ela.2023.7531
- C Amrouche, Commun. Math. Anal. (2011)
- Arnold, A., Dolbeault, J., Schmeiser, C. & Wöhrer, T. Sharpening of Decay Rates in Fourier Based Hypocoercivity Methods. Springer INdAM Series 1–50 (2021) doi:10.1007/978-3-030-82946-9_1 – 10.1007/978-3-030-82946-9_1
- Arnold, A., Schmeiser, C. & Signorello, B. Propagator norm and sharp decay estimates for Fokker–Planck equations with linear drift. Communications in Mathematical Sciences vol. 20 1047–1080 (2022) – 10.4310/cms.2022.v20.n4.a5
- Bae, H.-O. & Ja Jin, B. Estimates of the wake for the 3D Oseen equations. Discrete & Continuous Dynamical Systems - B vol. 10 1–18 (2008) – 10.3934/dcdsb.2008.10.1
- Batchelor, G. K. An Introduction to Fluid Dynamics. (2000) doi:10.1017/cbo9780511800955 – 10.1017/cbo9780511800955
- Bernstein, D. S. Scalar, Vector, and Matrix Mathematics. (2018) doi:10.1515/9781400888252 – 10.1515/9781400888252
- Bouin, E., Dolbeault, J., Mischler, S., Mouhot, C. & Schmeiser, C. Hypocoercivity without confinement. Pure and Applied Analysis vol. 2 203–232 (2020) – 10.2140/paa.2020.2.203
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. (Springer New York, 2011). doi:10.1007/978-0-387-70914-7 – 10.1007/978-0-387-70914-7
- Chemin, J.-Y., Desjardins, B., Gallagher, I. & Grenier, E. Fluids with anisotropic viscosity. ESAIM: Mathematical Modelling and Numerical Analysis vol. 34 315–335 (2000) – 10.1051/m2an:2000143
- Chemin, J.-Y., Desjardins, B., Gallagher, I. & Grenier, E. Stability of Navier–Stokes Equations. Mathematical Geophysics (2006) doi:10.1093/oso/9780198571339.003.0008 – 10.1093/oso/9780198571339.003.0008
- Infinite Dimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1978). doi:10.1007/bfb0006761 – 10.1007/bfb0006761
- Curtain, R. & Zwart, H. Introduction to Infinite-Dimensional Systems Theory. Texts in Applied Mathematics (Springer New York, 2020). doi:10.1007/978-1-0716-0590-5 – 10.1007/978-1-0716-0590-5
- Datko, R. Extending a theorem of A. M. Liapunov to Hilbert space. Journal of Mathematical Analysis and Applications vol. 32 610–616 (1970) – 10.1016/0022-247x(70)90283-0
- Dolbeault, J., Mouhot, C. & Schmeiser, C. Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus. Mathématique vol. 347 511–516 (2009) – 10.1016/j.crma.2009.02.025
- Dolbeault, J., Mouhot, C. & Schmeiser, C. Hypocoercivity for linear kinetic equations conserving mass. Transactions of the American Mathematical Society vol. 367 3807–3828 (2015) – 10.1090/s0002-9947-2015-06012-7
- Emmrich, E. & Mehrmann, V. Operator Differential-Algebraic Equations Arising in Fluid Dynamics. Computational Methods in Applied Mathematics vol. 13 443–470 (2013) – 10.1515/cmam-2013-0018
- KJ Engel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics (2000)
- Evans, L. Partial Differential Equations. Graduate Studies in Mathematics (2010) doi:10.1090/gsm/019 – 10.1090/gsm/019
- Foias, C., Manley, O., Rosa, R. & Temam, R. Navier-Stokes Equations and Turbulence. (2001) doi:10.1017/cbo9780511546754 – 10.1017/cbo9780511546754
- Galdi, G. P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer Monographs in Mathematics (Springer New York, 2011). doi:10.1007/978-0-387-09620-9 – 10.1007/978-0-387-09620-9
- GRABOWSKI, P. On the Spectral-Lyapunov Approach to Parametric Optimization of Distributed-Parameter Systems. IMA Journal of Mathematical Control and Information vol. 7 317–338 (1990) – 10.1093/imamci/7.4.317
- Hansen, S. New results on the operator Carleson measure criterion. IMA Journal of Mathematical Control and Information vol. 14 3–32 (1997) – 10.1093/imamci/14.1.3
- RA Horn, Matrix analysis (2013)
- John, V. Finite Element Methods for Incompressible Flow Problems. Springer Series in Computational Mathematics (Springer International Publishing, 2016). doi:10.1007/978-3-319-45750-5 – 10.1007/978-3-319-45750-5
- T Kailath, Linear systems (1980)
- Kato, T. Perturbation Theory for Linear Operators. Classics in Mathematics (Springer Berlin Heidelberg, 1995). doi:10.1007/978-3-642-66282-9 – 10.1007/978-3-642-66282-9
- Lagerstrom, P. A. Laminar Flow Theory. (1996) doi:10.1515/9780691245881 – 10.1515/9780691245881
- Layton, W. Introduction to the Numerical Analysis of Incompressible Viscous Flows. (2008) doi:10.1137/1.9780898718904 – 10.1137/1.9780898718904
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- Mikhailov, S. E. Stationary anisotropic Stokes, Oseen and Navier–Stokes systems: Periodic solutions in ℝn. Mathematical Methods in the Applied Sciences vol. 46 10903–10928 (2023) – 10.1002/mma.9159
- Paicu, M. Équation anisotrope de Navier-Stokes dans des espaces critiques. Revista Matemática Iberoamericana vol. 21 179–235 (2005) – 10.4171/rmi/420
- Paicu, M. Équation Périodique de Navier–Stokes sans Viscosité dans une Direction. Communications in Partial Differential Equations vol. 30 1107–1140 (2005) – 10.1080/036053005002575529
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences (Springer New York, 1983). doi:10.1007/978-1-4612-5561-1 – 10.1007/978-1-4612-5561-1
- Rannacher, R. Finite Element Methods for the Incompressible Navier-Stokes Equations. Fundamental Directions in Mathematical Fluid Mechanics 191–293 (2000) doi:10.1007/978-3-0348-8424-2_6 – 10.1007/978-3-0348-8424-2_6
- Temam, R. Navier–Stokes Equations and Nonlinear Functional Analysis. (1995) doi:10.1137/1.9781611970050 – 10.1137/1.9781611970050
- Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences (Springer New York, 1997). doi:10.1007/978-1-4612-0645-3 – 10.1007/978-1-4612-0645-3
- Temam, R. & Wang, X. Asymptotic analysis of Oseen type equations in a channel at small viscosity. Indiana University Mathematics Journal vol. 45 0–0 (1996) – 10.1512/iumj.1996.45.1290
- Villani, C. Hypocoercivity. Memoirs of the American Mathematical Society vol. 202 0–0 (2009) – 10.1090/s0065-9266-09-00567-5
- Wonham, W. M. Linear Multivariable Control. (Springer New York, 1985). doi:10.1007/978-1-4612-1082-5 – 10.1007/978-1-4612-1082-5