Authors

Bingkun Zhao, Haisheng Yu, Jinpeng Yu, Xudong Liu, Herong Wu

Abstract

A port-controlled Hamiltonian (PCH) control approach is presented to solve the position tracking problem of gantry robot based on induction motor (IM) drives. First, a robot model is established. Second, a PCH controller is designed to realize accurate position tracking of a gantry robot. For IM drives, it is convenient to choose a direct torque control strategy based on the sliding mode control, which overcomes the higher ripples of torque and flux. Third, a voltage reconstruction technique is introduced to calculate the stator voltage of the IM, which replaces the stator voltage measurement of the IM. Finally, the load torque observer is developed to estimate an unknown load torque. The asymptotic stability of the robot system is proved by the Lyapunov stability theory. Simulation results indicate that the system has excellent position tracking performances and load disturbance attenuation ability.

Citation

  • Journal: IEEE Access
  • Year: 2018
  • Volume: 6
  • Issue:
  • Pages: 43840–43849
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/access.2018.2862637

BibTeX

@article{Zhao_2018,
  title={{Port-Controlled Hamiltonian and Sliding Mode Control of Gantry Robot Based on Induction Motor Drives}},
  volume={6},
  ISSN={2169-3536},
  DOI={10.1109/access.2018.2862637},
  journal={IEEE Access},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Zhao, Bingkun and Yu, Haisheng and Yu, Jinpeng and Liu, Xudong and Wu, Herong},
  year={2018},
  pages={43840--43849}
}

Download the bib file

References

  • Djoudi, A., Bacha, S., Iman-Eini, H. & Rekioua, T. Sliding mode control of DFIG powers in the case of unknown flux and rotor currents with reduced switching frequency. International Journal of Electrical Power & Energy Systems 96, 347–356 (2018) – 10.1016/j.ijepes.2017.10.009
  • Wai, R.-J., Huang, Y.-C., Yang, Z.-W. & Shih, C.-Y. Adaptive fuzzy-neural-network velocity sensorless control for robot manipulator position tracking. IET Control Theory Appl. 4, 1079–1093 (2010) – 10.1049/iet-cta.2009.0166
  • Yu, L., Fei, S., Huang, J. & Gao, Y. Trajectory Switching Control of Robotic Manipulators Based on RBF Neural Networks. Circuits Syst Signal Process 33, 1119–1133 (2013) – 10.1007/s00034-013-9682-4
  • yu, Energy-shaping and $L_{2}$ gain disturbance attenuation control of induction motor. Int J Innov Comput Inf Control (2012)
  • Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn 72, 49–59 (2012) – 10.1007/s11071-012-0689-3
  • Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
  • Chi, J., Yu, H. & Yu, J. Hybrid Tracking Control of 2-DOF SCARA Robot via Port-Controlled Hamiltonian and Backstepping. IEEE Access 6, 17354–17360 (2018)10.1109/access.2018.2820681
  • Alsofyani, I. M. & Idris, N. R. N. Simple Flux Regulation for Improving State Estimation at Very Low and Zero Speed of a Speed Sensorless Direct Torque Control of an Induction Motor. IEEE Trans. Power Electron. 31, 3027–3035 (2016) – 10.1109/tpel.2015.2447731
  • Lascu, C., Boldea, I. & Blaabjerg, F. A modified direct torque control for induction motor sensorless drive. IEEE Trans. on Ind. Applicat. 36, 122–130 (2000) – 10.1109/28.821806
  • N, V. N., Panda, A. & Singh, S. P. A Three-Level Fuzzy-2 DTC of Induction Motor Drive Using SVPWM. IEEE Trans. Ind. Electron. 63, 1467–1479 (2016) – 10.1109/tie.2015.2504551
  • Habibullah, Md., Lu, D. D.-C., Xiao, D. & Rahman, M. F. A Simplified Finite-State Predictive Direct Torque Control for Induction Motor Drive. IEEE Trans. Ind. Electron. 63, 3964–3975 (2016) – 10.1109/tie.2016.2519327
  • Rahoui, A., Bechouche, A., Seddiki, H. & Abdeslam, D. O. Grid Voltages Estimation for Three-Phase PWM Rectifiers Control Without AC Voltage Sensors. IEEE Trans. Power Electron. 33, 859–875 (2018) – 10.1109/tpel.2017.2669146
  • Yin, W., Sun, L., Wang, M. & Liu, J. Nonlinear state feedback position control for flexible joint robot with energy shaping. Robotics and Autonomous Systems 99, 121–134 (2018) – 10.1016/j.robot.2017.10.007
  • Mohammadi, A., Tavakoli, M., Marquez, H. J. & Hashemzadeh, F. Nonlinear disturbance observer design for robotic manipulators. Control Engineering Practice 21, 253–267 (2013) – 10.1016/j.conengprac.2012.10.008
  • Zhang, Y., Yan, P. & Zhang, Z. High precision tracking control of a servo gantry with dynamic friction compensation. ISA Transactions 62, 349–356 (2016) – 10.1016/j.isatra.2016.02.006
  • Ouyang, P. R., Pano, V., Tang, J. & Yue, W. H. Position domain nonlinear PD control for contour tracking of robotic manipulator. Robotics and Computer-Integrated Manufacturing 51, 14–24 (2018) – 10.1016/j.rcim.2017.11.017
  • Ammar, A., Bourek, A. & Benakcha, A. Robust SVM-direct torque control of induction motor based on sliding mode controller and sliding mode observer. Front. Energy 14, 836–849 (2017) – 10.1007/s11708-017-0444-z
  • Arakelian, V. Gravity compensation in robotics. Advanced Robotics 30, 79–96 (2015) – 10.1080/01691864.2015.1090334
  • He, W., Dong, Y. & Sun, C. Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation. IEEE Trans. Syst. Man Cybern, Syst. 46, 334–344 (2016) – 10.1109/tsmc.2015.2429555
  • Arian, A., Danaei, B., Abdi, H. & Nahavandi, S. Kinematic and dynamic analysis of the Gantry-Tau, a 3-DoF translational parallel manipulator. Applied Mathematical Modelling 51, 217–231 (2017) – 10.1016/j.apm.2017.06.012
  • Frikha, S., Djemel, M. & Derbel, N. A New Adaptive Neuro-sliding Mode Control for Gantry Crane. Int. J. Control Autom. Syst. 16, 559–565 (2018) – 10.1007/s12555-017-0070-x
  • He, W., Chen, Y. & Yin, Z. Adaptive Neural Network Control of an Uncertain Robot With Full-State Constraints. IEEE Trans. Cybern. 46, 620–629 (2016) – 10.1109/tcyb.2015.2411285
  • Baicu, C. F., Rahn, C. D. & Dawson, D. M. Backstepping boundary control of flexible-link electrically driven gantry robots. IEEE/ASME Trans. Mechatron. 3, 60–66 (1998) – 10.1109/3516.662869
  • Ammar, A., Benakcha, A. & Bourek, A. Closed loop torque SVM-DTC based on robust super twisting speed controller for induction motor drive with efficiency optimization. International Journal of Hydrogen Energy 42, 17940–17952 (2017) – 10.1016/j.ijhydene.2017.04.034
  • Ammar, A., Bourek, A. & Benakcha, A. Sensorless SVM-Direct Torque Control for Induction Motor Drive Using Sliding Mode Observers. J Control Autom Electr Syst 28, 189–202 (2016) – 10.1007/s40313-016-0294-7
  • Oliveira, C. M. R. et al. Vector Control of Induction Motor Using an Integral Sliding Mode Controller with Anti-windup. J Control Autom Electr Syst 27, 169–178 (2016) – 10.1007/s40313-016-0228-4
  • sudheer, Improvements in direct torque control of induction motor for wide range of speed operation using fuzzy logic. J Elect Syst Inf Technol (0)
  • Ammar, A., Bourek, A. & Benakcha, A. Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control. ISA Transactions 67, 428–442 (2017) – 10.1016/j.isatra.2017.01.010
  • Yu, L., Huang, J. & Fei, S. Sliding Mode Switching Control of Manipulators Based on Disturbance Observer. Circuits Syst Signal Process 36, 2574–2585 (2016) – 10.1007/s00034-016-0421-5
  • Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398