Passive-guaranteed modeling and simulation of a finite element nonlinear string model
Authors
David Roze, Mathis Raibaud, Thibault Geoffroy
Abstract
This paper proposes to solve the dynamics of the Kirchhoff-Carrier nonlinear string model using the finite elements method. In order to ensure the power balance of the resulting finite dimensional model it is rewritten in the Port-Hamiltonian System (PHS) formalism. Using a discrete gradient and a quadratization of the Hamiltonian, an explicit power-preserving numerical scheme is proposed. Results of simulation are presented.
Keywords
Distributed parameter systems; Numerical Methods; Hamiltonian dynamics; Port-Hamiltonian systems; Quadratization; Nonlinear string model; Finite elements method
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 226–231
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.285
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Roze_2024,
title={{Passive-guaranteed modeling and simulation of a finite element nonlinear string model}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.285},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Roze, David and Raibaud, Mathis and Geoffroy, Thibault},
year={2024},
pages={226--231}
}
References
- Anand, G. V. Large-Amplitude Damped Free Vibration of a Stretched String. The Journal of the Acoustical Society of America vol. 45 1089–1096 (1969) – 10.1121/1.1911578
- Bilbao, (2009)
- Bilbao, S., Ducceschi, M. & Zama, F. Explicit exactly energy-conserving methods for Hamiltonian systems. Journal of Computational Physics vol. 472 111697 (2023) – 10.1016/j.jcp.2022.111697
- Boffi, (2013)
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Brugnoli, (2022)
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Carrier, G. F. On the non-linear vibration problem of the elastic string. Quarterly of Applied Mathematics vol. 3 157–165 (1945) – 10.1090/qam/12351
- Chabassier, J., Chaigne, A. & Joly, P. Modeling and simulation of a grand piano. The Journal of the Acoustical Society of America vol. 134 648–665 (2013) – 10.1121/1.4809649
- Chabassier, J. & Joly, P. Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: Application to the vibrating piano string. Computer Methods in Applied Mechanics and Engineering vol. 199 2779–2795 (2010) – 10.1016/j.cma.2010.04.013
- Chaigne, (2016)
- Ducceschi, M. & Bilbao, S. Simulation of the geometrically exact nonlinear string via energy quadratisation. Journal of Sound and Vibration vol. 534 117021 (2022) – 10.1016/j.jsv.2022.117021
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Gonzalez, O. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Computer Methods in Applied Mechanics and Engineering vol. 190 1763–1783 (2000) – 10.1016/s0045-7825(00)00189-4
- Hélie, (2022)
- Itoh, T. & Abe, K. Hamiltonian-conserving discrete canonical equations based on variational difference quotients. Journal of Computational Physics vol. 76 85–102 (1988) – 10.1016/0021-9991(88)90132-5
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Lopes, (2015)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Narasimha, R. Non-Linear vibration of an elastic string. Journal of Sound and Vibration vol. 8 134–146 (1968) – 10.1016/0022-460x(68)90200-9
- Quispel, G. R. W. & Turner, G. S. Discrete gradient methods for solving ODEs numerically while preserving a first integral. Journal of Physics A: Mathematical and General vol. 29 L341–L349 (1996) – 10.1088/0305-4470/29/13/006
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Thoma, T. & Kotyczka, P. Explicit Port-Hamiltonian FEM-Models for Linear Mechanical Systems with Non-Uniform Boundary Conditions. IFAC-PapersOnLine vol. 55 499–504 (2022) – 10.1016/j.ifacol.2022.09.144
- Valette, (1993)
- van der Schaft, (2013)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Watzky, A. Non-linear three-dimensional large-amplitude damped free vibration of a stiff elastic stretched string. Journal of Sound and Vibration vol. 153 125–142 (1992) – 10.1016/0022-460x(92)90632-8
- Wijnand, (2022)