Optimal actuator location for electro-active polymer actuated endoscope
Authors
Abstract
This paper deals with optimal actuator location for a medical endoscope controlled by electro-active polymer (EAP). The inner tube of the endoscope is a flexible structure that can be represented by a Timoshenko beam. Actuators are patches of EAP. There is freedom in the choice of EAP actuators location. In this paper, we first propose a port Hamiltonian model of the endoscope. In order to choose the optimal location for the EAP actuators, we consider the linear quadratic (LQ) performance as the optimal performance objective. At last, some numerical simulation results are given based on the real experimental setup parameters.
Keywords
Medical endoscope; optimal actuator location; linear quadratic optimization; port Hamiltonian system
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 199–204
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.053
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Wu_2018,
title={{Optimal actuator location for electro-active polymer actuated endoscope}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.053},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Wu, Yongxin and Gorrec, Yann Le},
year={2018},
pages={199--204}
}
References
- Anderson, (1967)
- Baaiu, A., Couenne, F., Lefevre, L., Le Gorrec, Y. & Tayakout, M. Structure-preserving infinite dimensional model reduction: Application to adsorption processes. Journal of Process Control vol. 19 394–404 (2009) – 10.1016/j.jprocont.2008.07.002
- Chikhaoui, (2014)
- Curtain, R. F. & Sasane, A. J. Compactness and nuclearity of the Hankel operator and internal stability of infinite-dimensional state linear systems. International Journal of Control vol. 74 1260–1270 (2001) – 10.1080/00207170110061059
- Curtain, (1995)
- Duindam, (2009)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Jacob, (2012)
- Macchelli, A. & Melchiorri, C. Control by Interconnection and Energy Shaping of the Timoshenko Beam. Mathematical and Computer Modelling of Dynamical Systems vol. 10 231–251 (2004) – 10.1080/13873950412331335243
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links. IEEE Transactions on Robotics vol. 25 1016–1029 (2009) – 10.1109/tro.2009.2026504
- Morris, K. Linear-Quadratic Optimal Actuator Location. IEEE Transactions on Automatic Control vol. 56 113–124 (2011) – 10.1109/tac.2010.2052151
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice vol. 19 321–334 (2011) – 10.1016/j.conengprac.2010.10.005
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Webster, R. J., III & Jones, B. A. Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review. The International Journal of Robotics Research vol. 29 1661–1683 (2010) – 10.1177/0278364910368147
- Shahinpoor, M. & Kim, K. J. Ionic polymer-metal composites: I. Fundamentals. Smart Materials and Structures vol. 10 819–833 (2001) – 10.1088/0964-1726/10/4/327
- Slemrod, M. Sensors and Controls in the Analysis of Distributed Systems (A. El Jai and A. J. Pritchard). SIAM Review vol. 31 710–710 (1989) – 10.1137/1031164
- van de Wal, M. & de Jager, B. A review of methods for input/output selection. Automatica vol. 37 487–510 (2001) – 10.1016/s0005-1098(00)00181-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176