On the relationship between stochastic and deterministic energy shaping techniques for stochastic port-Hamiltonian systems via invariant measure characterization
Authors
Francesco Giuseppe Cordoni, Luca Di Persio, Riccardo Muradore
Abstract
This paper derives two relevant results in the context of weak energy shaping for stochastic port-Hamiltonian systems (SPHS). Energy shaping is a technique systematically used to design feedback laws that shape the Hamiltonian of a controlled system to converge to a desired configuration under a general passivity condition. Such an approach has been recently extended to SPHS, but the resulting theory has limitations excluding relevant examples such as the additive noise case. However, it has been shown that the invariant measure of the SPHS allows the introduction of a weaker notion of convergence, hence obtaining a significant extension of the classical energy shaping theory for SPHS. In this paper, we continue investigating the weak energy shaping of SPHS, showing that the Fokker–Planck equation associated with an SPHS can be seen as the Fokker–Planck equation of an infinite-dimensional deterministic PHS. Moreover, we explicitly compute the invariant measure for a specific class of SPHS with additive noise.
Keywords
Stochastic port-Hamiltonian systems; Passivity; Infinite-dimensional port-Hamiltonian systems; Invariant measures
Citation
- Journal: Automatica
- Year: 2025
- Volume: 179
- Issue:
- Pages: 112385
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2025.112385
BibTeX
@article{Cordoni_2025,
title={{On the relationship between stochastic and deterministic energy shaping techniques for stochastic port-Hamiltonian systems via invariant measure characterization}},
volume={179},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2025.112385},
journal={Automatica},
publisher={Elsevier BV},
author={Cordoni, Francesco Giuseppe and Di Persio, Luca and Muradore, Riccardo},
year={2025},
pages={112385}
}
References
- Arnaudon, A., Ganaba, N. & Holm, D. D. The stochastic energy-Casimir method. Comptes Rendus. Mécanique 346, 279–290 (2018) – 10.1016/j.crme.2018.01.003
- Barbu, (2019)
- Borkar, A note on stochastic dissipativeness. (2003)
- Cordoni, F., Persio, L. D. & Muradore, R. A variable stochastic admittance control framework with energy tank. IFAC-PapersOnLine 53, 9986–9991 (2020) – 10.1016/j.ifacol.2020.12.2716
- Cordoni, F., Di Persio, L. & Muradore, R. Bilateral teleoperation of stochastic port‐Hamiltonian systems using energy tanks. Intl J Robust & Nonlinear 31, 9332–9357 (2021) – 10.1002/rnc.5780
- Cordoni, F., Di Persio, L. & Muradore, R. Stabilization of bilateral teleoperators with asymmetric stochastic delay. Systems & Control Letters 147, 104828 (2021) – 10.1016/j.sysconle.2020.104828
- Cordoni, F. G., Di Persio, L. & Muradore, R. Discrete stochastic port-Hamiltonian systems. Automatica 137, 110122 (2022) – 10.1016/j.automatica.2021.110122
- Cordoni, F., Di Persio, L. & Muradore, R. Stochastic Port-Hamiltonian Systems. J Nonlinear Sci 32, (2022) – 10.1007/s00332-022-09853-2
- Cordoni, F., Di Persio, L. & Muradore, R. Weak Energy Shaping for Stochastic Controlled Port-Hamiltonian Systems. SIAM J. Control Optim. 61, 2902–2926 (2023) – 10.1137/22m1482585
- Dalsmo, A Hamiltonian framework for interconnected physical systems. (1997)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Fang, (2016)
- Florchinger, P. A stochastic version of Jurdjevic–Quinn theorem. Stochastic Analysis and Applications 12, 473–480 (1994) – 10.1080/07362999408809364
- Florchinger, P. A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems. SIAM J. Control Optim. 37, 1848–1864 (1999) – 10.1137/s0363012997317478
- Florchinger, P. Stabilization of Passive Nonlinear Stochastic Differential Systems by Bounded Feedback. Stochastic Analysis and Applications 21, 1255–1282 (2003) – 10.1081/sap-120026106
- Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica 97, 134–142 (2018) – 10.1016/j.automatica.2018.07.031
- Jacobsen, A brief account of the theory of homogeneous Gaussian diffusions in finite dimensions. Frontiers in Pure and Applied Probability (1993)
- Karatzas, Brownian motion. (1998)
- Lorenzi, (2006)
- Ortega, Energy-shaping of port-controlled Hamiltonian systems by interconnection. (1999)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Satoh, S. Input‐to‐state stability of stochastic port‐Hamiltonian systems using stochastic generalized canonical transformations. Intl J Robust & Nonlinear 27, 3862–3885 (2017) – 10.1002/rnc.3769
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 58, 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Satoh, S. & Saeki, M. Bounded stabilisation of stochastic port-Hamiltonian systems. International Journal of Control 87, 1573–1582 (2014) – 10.1080/00207179.2014.880127
- Van Der Schaft, Composition of Dirac structures and control of port-Hamiltonian systems. (2002)