On potential function design for path following control of port-Hamiltonian systems
Authors
Yuki Okura, Kenji Fujimoto, Akio Saito, Hidetoshi Ikeda
Abstract
This paper describes a procedure to design potential functions for path following control of port-Hamiltonian systems. The conventional path following control method needs to find a time invariant potential function which takes its minimum on the desired path. It is so difficult to find a potential function for a complex path. Inspired by the results of existing trajectory tracking control of port-Hamiltonian systems, we propose an improved path following control method. By solving partial differential equations, a potential function for path following control is acquired.
Citation
- Journal: 2017 IEEE 56th Annual Conference on Decision and Control (CDC)
- Year: 2017
- Volume:
- Issue:
- Pages: 2569–2574
- Publisher: IEEE
- DOI: 10.1109/cdc.2017.8264031
BibTeX
@inproceedings{Okura_2017,
title={{On potential function design for path following control of port-Hamiltonian systems}},
DOI={10.1109/cdc.2017.8264031},
booktitle={{2017 IEEE 56th Annual Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Okura, Yuki and Fujimoto, Kenji and Saito, Akio and Ikeda, Hidetoshi},
year={2017},
pages={2569--2574}
}
References
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory Tracking Control of Nonholonomic Hamiltonian Systems via Generalized Canonical Transformations. European Journal of Control 10, 421–431 (2004) – 10.3166/ejc.10.421-431
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
- Isidori, A. Nonlinear Control Systems. Communications and Control Engineering (Springer London, 1995). doi:10.1007/978-1-84628-615-5 – 10.1007/978-1-84628-615-5
- Li, P. Y. & Horowitz, R. Passive velocity field control (PVFC). Part II. Application to contour following. IEEE Trans. Automat. Contr. 46, 1360–1371 (2001) – 10.1109/9.948464
- Li, P. Y. & Horowitz, R. Passive velocity field control (PVFC). Part I. Geometry and robustness. IEEE Trans. Automat. Contr. 46, 1346–1359 (2001) – 10.1109/9.948463
- Taniguchi, M. & Fujimoto, K. Asymptotic path following and velocity control of port-Hamiltonian systems. 2009 European Control Conference (ECC) 236–241 (2009) doi:10.23919/ecc.2009.7074410 – 10.23919/ecc.2009.7074410
- Duindam, V. & Stramigioli, S. Port-Based Asymptotic Curve Tracking for Mechanical Systems. European Journal of Control 10, 411–420 (2004) – 10.3166/ejc.10.411-420
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Slotine, J.-J. E. & Li, W. Composite adaptive control of robot manipulators. Automatica 25, 509–519 (1989) – 10.1016/0005-1098(89)90094-0
- hogan, Impedance control: An approach to manipulation. American Control Conference (1984)
- Salisbury, J. Active stiffness control of a manipulator in cartesian coordinates. 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes (1980) doi:10.1109/cdc.1980.272026 – 10.1109/cdc.1980.272026
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005