Well-posedness of systems of 1-D hyperbolic partial differential equations
Authors
Abstract
No abstract available
Citation
- Journal: Journal of Evolution Equations
- Year: 2019
- Volume: 19
- Issue: 1
- Pages: 91–109
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00028-018-0470-2
BibTeX
@article{Jacob_2018,
title={{Well-posedness of systems of 1-D hyperbolic partial differential equations}},
volume={19},
ISSN={1424-3202},
DOI={10.1007/s00028-018-0470-2},
number={1},
journal={Journal of Evolution Equations},
publisher={Springer Science and Business Media LLC},
author={Jacob, Birgit and Kaiser, Julia T.},
year={2018},
pages={91--109}
}References
- B. Augner, Stabilisation of Infinite-dimensional Port-Hamiltonian Systems, Ph.D. thesis, University of Wuppertal, 2016.
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Bastin, G. & Coron, J.-M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Progress in Nonlinear Differential Equations and Their Applications (Springer International Publishing, 2016). doi:10.1007/978-3-319-32062-5 – 10.1007/978-3-319-32062-5
- Berkolaiko, G. & Kuchment, P. Introduction to Quantum Graphs. Mathematical Surveys and Monographs (2012) doi:10.1090/surv/186 – 10.1090/surv/186
- Engel, K.-J. Generator property and stability for generalized difference operators. Journal of Evolution Equations vol. 13 311–334 (2013) – 10.1007/s00028-013-0179-1
- K. J. Engel and M. Fijavz, Waves and diffusion on metric graphs with general vertex conditions, https://arxiv.org/abs/1712.03030.
- K-J Engel. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, (1999), Springer Science & Business Media, Berlin Heidelberg. (1999)
- K-J Engel. K.-J. Engel and R. Nagel, A Short Course on Operator Semigroups, (2006), Springer Science & Business Media, Berlin Heidelberg. (2006)
- Hinrichsen, D. & Pritchard, A. J. Mathematical Systems Theory I. Texts in Applied Mathematics (Springer Berlin Heidelberg, 2005). doi:10.1007/b137541 – 10.1007/b137541
- Jacob, B., Morris, K. & Zwart, H. C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. Journal of Evolution Equations vol. 15 493–502 (2015) – 10.1007/s00028-014-0271-1
- B. Jacob and H.J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, Operator Theory: Advances and Applications, 223 (2012), Birkhäuser, Basel.
- V. Kostrykin, J. Potthoff and R. Schrader, Contraction semigroups on metric graphs In: Analysis on graphs and its applications, Proc. Sympos. Pure Math., 77 (2008), 42-458.
- Kostrykin, V. & Schrader, R. Kirchhoff’s rule for quantum wires. Journal of Physics A: Mathematical and General vol. 32 595–630 (1999) – 10.1088/0305-4470/32/4/006
- M. Kurula and H. Zwart, Linear wave systems on $n$-D spatial domains, Internat. J. Control, 88 (5) (2015), 1063–1077. (2015)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Mugnolo, D. Semigroup Methods for Evolution Equations on Networks. Understanding Complex Systems (Springer International Publishing, 2014). doi:10.1007/978-3-319-04621-1 – 10.1007/978-3-319-04621-1
- D. Mugnolo, D. Noja, and C. Seifert, Airy-type evolution equations on star graphs, Preprint, (2016), https://arxiv.org/pdf/1608.01461.pdf
- Schubert, C., Seifert, C., Voigt, J. & Waurick, M. Boundary systems and (skew‐)self‐adjoint operators on infinite metric graphs. Mathematische Nachrichten vol. 288 1776–1785 (2015) – 10.1002/mana.201500054
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- J.A. Villegas, A port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D. thesis, Universiteit Twente in Enschede, 2007.
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036