@article{Jacob_2018,title={{Well-posedness of systems of 1-D hyperbolic partial differential equations}},volume={19},ISSN={1424-3202},DOI={10.1007/s00028-018-0470-2},number={1},journal={Journal of Evolution Equations},publisher={Springer Science and Business Media LLC},author={Jacob, Birgit and Kaiser, Julia T.},year={2018},pages={91--109}}
Bastin, G. & Coron, J.-M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Progress in Nonlinear Differential Equations and Their Applications (Springer International Publishing, 2016). doi:10.1007/978-3-319-32062-5 – 10.1007/978-3-319-32062-5
Berkolaiko, G. & Kuchment, P. Introduction to Quantum Graphs. Mathematical Surveys and Monographs (2012) doi:10.1090/surv/186 – 10.1090/surv/186
Engel, K.-J. Generator property and stability for generalized difference operators. Journal of Evolution Equations vol. 13 311–334 (2013) – 10.1007/s00028-013-0179-1
K. J. Engel and M. Fijavz, Waves and diffusion on metric graphs with general vertex conditions, https://arxiv.org/abs/1712.03030.
K-J Engel. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, (1999), Springer Science & Business Media, Berlin Heidelberg. (1999)
K-J Engel. K.-J. Engel and R. Nagel, A Short Course on Operator Semigroups, (2006), Springer Science & Business Media, Berlin Heidelberg. (2006)
Hinrichsen, D. & Pritchard, A. J. Mathematical Systems Theory I. Texts in Applied Mathematics (Springer Berlin Heidelberg, 2005). doi:10.1007/b137541 – 10.1007/b137541
B. Jacob and H.J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, Operator Theory: Advances and Applications, 223 (2012), Birkhäuser, Basel.
V. Kostrykin, J. Potthoff and R. Schrader, Contraction semigroups on metric graphs In: Analysis on graphs and its applications, Proc. Sympos. Pure Math., 77 (2008), 42-458.
Kostrykin, V. & Schrader, R. Kirchhoff’s rule for quantum wires. Journal of Physics A: Mathematical and General vol. 32 595–630 (1999) – 10.1088/0305-4470/32/4/006
M. Kurula and H. Zwart, Linear wave systems on $n$-D spatial domains, Internat. J. Control, 88 (5) (2015), 1063–1077. (2015)
Mugnolo, D. Semigroup Methods for Evolution Equations on Networks. Understanding Complex Systems (Springer International Publishing, 2014). doi:10.1007/978-3-319-04621-1 – 10.1007/978-3-319-04621-1
D. Mugnolo, D. Noja, and C. Seifert, Airy-type evolution equations on star graphs, Preprint, (2016), https://arxiv.org/pdf/1608.01461.pdf
Schubert, C., Seifert, C., Voigt, J. & Waurick, M. Boundary systems and (skew‐)self‐adjoint operators on infinite metric graphs. Mathematische Nachrichten vol. 288 1776–1785 (2015) – 10.1002/mana.201500054
J.A. Villegas, A port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D. thesis, Universiteit Twente in Enschede, 2007.
Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036