Distributed port hamiltonian formulation of flexible beams under large deformations
Authors
Abstract
In this paper, a formulation of flexible beams under large deformations for distributed parameter port Hamiltonian systems is presented. This model is one example of systems that have complex energy variables. For such a model, a unified modeling method is introduced with multivariable representation. First, a Stokes-Dirac structure is related to the calculus of variations by using a jet bundle formalism. Next, the flexible beams model is represented as the port Hamiltonian system. Finally, the model is compared to a conventional model and two reduced models
Citation
- Journal: Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005.
- Year: 2005
- Volume:
- Issue:
- Pages: 589–594
- Publisher: IEEE
- DOI: 10.1109/cca.2005.1507190
BibTeX
@inproceedings{Gou_Nishida,
title={{Distributed port hamiltonian formulation of flexible beams under large deformations}},
DOI={10.1109/cca.2005.1507190},
booktitle={{Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005.}},
publisher={IEEE},
author={Gou Nishida and Yamakita, M.},
pages={589--594}
}
References
- sakurai, Advanced Quantum Mechanics (1967)
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Saunders, D. J. The Geometry of Jet Bundles. (1989) doi:10.1017/cbo9780511526411 – 10.1017/cbo9780511526411
- Zheng-Hua Luo & Bao-Zhu Guo. Shear force feedback control of a single-link flexible robot with a revolute joint. IEEE Trans. Automat. Contr. 42, 53–65 (1997) – 10.1109/9.553687
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Simo, J. C. & Vu-Quoc, L. On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part I. Journal of Applied Mechanics 53, 849–854 (1986) – 10.1115/1.3171870
- Zheng-Hua Luo. Direct strain feedback control of flexible robot arms: new theoretical and experimental results. IEEE Trans. Automat. Contr. 38, 1610–1622 (1993) – 10.1109/9.262031
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Nishida, G. & Yamakita, M. Disturbance structure decomposition for distributed-parameter port-Hamiltonian systems. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 2082-2087 Vol.2 (2004) doi:10.1109/cdc.2004.1430355 – 10.1109/cdc.2004.1430355
- Nishida, G. & Yamakita, M. A higher order Stokes-Dirac structure for distributed-parameter port-Hamiltonian systems. Proceedings of the 2004 American Control Conference 5004–5009 vol.6 (2004) doi:10.23919/acc.2004.1384643 – 10.23919/acc.2004.1384643
- golo, Hamiltonian formulation of planar beams. Proc IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003)
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3768-3773 Vol.4 (2004) doi:10.1109/cdc.2004.1429325 – 10.1109/cdc.2004.1429325
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems I. Modeling. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3762-3767 Vol.4 (2004) doi:10.1109/cdc.2004.1429324 – 10.1109/cdc.2004.1429324