Modelling of the human middle ear via the Port Hamiltonian approach
Authors
Milka C. I. Madahana, Mohlalakoma Ngwako, Otis O. T. Nyandoro, John E. D. Ekoru
Abstract
A novel energy based model of the human middle ear is presented. A Port-Hamiltonian modelling approach is used in the development of the model. The model is used to illustrate, sound transmission through the middle ear of a healthy subject. Parameters for validating the developed model were obtained from existing literature. The results indicate a peak at 1 kHz, confirming the behaviour of the middle ear as a resonant system tuned to the frequency between 700 and 1200 kHz. The results were found to be comparable to clinical and audiological data in existing literature. Future improvements to the presented model would include the rotational motion of the Stapes in the middle ear.
Citation
- Journal: 2021 International Automatic Control Conference (CACS)
- Year: 2021
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/cacs52606.2021.9639063
BibTeX
@inproceedings{Madahana_2021,
title={{Modelling of the human middle ear via the Port Hamiltonian approach}},
DOI={10.1109/cacs52606.2021.9639063},
booktitle={{2021 International Automatic Control Conference (CACS)}},
publisher={IEEE},
author={Madahana, Milka C. I. and Ngwako, Mohlalakoma and Nyandoro, Otis O. T. and Ekoru, John E. D.},
year={2021},
pages={1--6}
}
References
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling 75, 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures 69, 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Madahana, M. C. I., Nyandoro, O. T. C. & Ekoru, J. E. D. A Human Inner Ear Model for assessment of Noise Induced Hearing Loss via energy methods. IFAC-PapersOnLine 53, 16424–16429 (2020) – 10.1016/j.ifacol.2020.12.727
- Madahana, M. C. I., Ekoru, J. E. D. & Nyandoro, O. O. T. Energy based model of the human Ear canal and tympanic membrane for sound transmission. IFAC-PapersOnLine 53, 16406–16411 (2020) – 10.1016/j.ifacol.2020.12.704
- villegas, A Port-Hamiltonian approach to distributed parameter systems. Ph D Dissertation (2007)
- edwards, Noise-induced hearing loss: Prevalence, degree and impairment criteria in south african gold miners. Ph D Dissertation (2012)
- suter, Engineering controls for occupational noise exposure: The best way to save hearing. Sound and Vibration (2012)
- rossing, The Science of Sound (2000)
- madahana, A Port Hamiltonian model of the human outer, middle and inner ear, and its application. 2019 masters Dissertation (0)
- De Paolis, A. et al. Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hearing Research 349, 111–128 (2017) – 10.1016/j.heares.2017.01.015
- daniels, Finite element model of the human eardrum and middle ear. Ph D Dissertation (2002)
- naghibolhosseini, estimation of outer-middle ear transmission using dpoaes and fractional-order modeling of human middle ear. Ph D Dissertation (2015)
- Gan, R. Z., Reeves, B. P. & Wang, X. Modeling of Sound Transmission from Ear Canal to Cochlea. Ann Biomed Eng 35, 2180–2195 (2007) – 10.1007/s10439-007-9366-y
- Gan, R. Z., Feng, B. & Sun, Q. Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission. Annals of Biomedical Engineering 32, 847–859 (2004) – 10.1023/b:abme.0000030260.22737.53
- Onchi, Y. A Study of the Mechanism of the Middle Ear. The Journal of the Acoustical Society of America 21, 404–410 (1949) – 10.1121/1.1906527
- Gan, R. Z., Feng, B. & Sun, Q. Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission. Annals of Biomedical Engineering 32, 847–859 (2004) – 10.1023/b:abme.0000030260.22737.53
- Madahana, M. C. I., Ekoru, J. E. D., Mashinini, T. L. & Nyandoro, O. T. C. Mine workers threshold shift estimation via optimization algorithms for deep recurrent neural networks. IFAC-PapersOnLine 52, 117–122 (2019) – 10.1016/j.ifacol.2019.09.174
- Gan, R. Z., Sun, Q., Feng, B. & Wood, M. W. Acoustic–structural coupled finite element analysis for sound transmission in human ear—Pressure distributions. Medical Engineering & Physics 28, 395–404 (2006) – 10.1016/j.medengphy.2005.07.018
- Madahana, M. C. I., Ekoru, J. E. D. & Nyandoro, O. T. C. Smart automated noise policy monitoring and feedback control system for mining application. IFAC-PapersOnLine 52, 177–182 (2019) – 10.1016/j.ifacol.2019.09.184
- Xue, F. et al. The biological significance of acoustic stimuli determines ear preference in the music frog. Journal of Experimental Biology 218, 740–747 (2015) – 10.1242/jeb.114694
- Feng, B. & Gan, R. Z. Lumped parametric model of the human ear for sound transmission. Biomech Model Mechanobiol 3, 33–47 (2004) – 10.1007/s10237-004-0044-9
- Madahana, M. C. I., Ekoru, J. E. D., Mashinini, T. L. & Nyandoro, O. T. C. Noise level policy advising system for mine workers. IFAC-PapersOnLine 52, 249–254 (2019) – 10.1016/j.ifacol.2019.09.195
- alvord, Anatomy and orientation of the human external ear. Journal of the American Academy of Audiology (0)
- Voss, S. E., Rosowski, J. J., Merchant, S. N. & Peake, W. T. Acoustic responses of the human middle ear. Hearing Research 150, 43–69 (2000) – 10.1016/s0378-5955(00)00177-5
- nanda, Ph D Dissertation (2012)
- Occupational Hearing Loss. (2006) doi:10.1201/9781420015478 – 10.1201/9781420015478
- Deafness and Hearing Loss (0)
- Rusinek, R., Warminski, J., Zadrozniak, M. & Szymanski, M. Nonlinear Approach to Modelling of Otosclerosis in a Human Middle Ear. Differ Equ Dyn Syst 21, 45–57 (2012) – 10.1007/s12591-012-0122-x
- Fragoso, L. B. et al. A mass-spring model of the auditory system in otosclerosis. Rev. Bras. Eng. Bioméd. 30, 281–288 (2014) – 10.1590/1517-3151.0252
- Huber, A., Koike, T., Nandapalan, V., Wada, H. & Fisch, U. Fixation of the Anterior Mallear Ligament: Diagnosis and Consequences for Hearing Results in Stapes Surgery. Ann Otol Rhinol Laryngol 112, 348–355 (2003) – 10.1177/000348940311200409
- Mora, L. A., Yuz, J. I., Ramirez, H. & Gorrec, Y. L. A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds ⁎ ⁎This work was supported by CONICYT-PFCHA/2017-21170472, and AC3E CONICYT-Basal Project FB-0008. IFAC-PapersOnLine 51, 62–67 (2018) – 10.1016/j.ifacol.2018.06.016
- van der schaft, Port-hamiltonian systems: an introductory survey. (2006)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3