Energy based model of the human Ear canal and tympanic membrane for sound transmission
Authors
Milka C.I. Madahana, John E.D. Ekoru, Otis O.T. Nyandoro
Abstract
The objective of this paper is to present a unique energy based model of the human outer ear and the tympanic membrane. The developed model employs the Port Hamiltonian modelling approach. The tympanic membrane is modelled as an Euler-Bernoulli beam. The frequency response of the model at speech frequencies which are significant for sound transmission are found to comparable to existing results in literature. This model can also be used for investigation of tympanic membrane rupture or perforations. Future work will include modelling of the ear canal as horn shaped and inclusion of the angular motion of the tympanic membrane.
Keywords
Port- Hamiltonian; Euler Bernoulli; tympanic membrane; Frequency; occupational; ear canal
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 16406–16411
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.704
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Madahana_2020,
title={{Energy based model of the human Ear canal and tympanic membrane for sound transmission}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.704},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Madahana, Milka C.I. and Ekoru, John E.D. and Nyandoro, Otis O.T.},
year={2020},
pages={16406--16411}
}
References
- Alvord, Anatomy and orientation of the human external ear. Journal of the American Academy of Audiology (1997)
- Angerer, M., Music, S. & Hirche, S. Port-Hamiltonian based control for human-robot team interaction. 2017 IEEE International Conference on Robotics and Automation (ICRA) 2292–2299 (2017) doi:10.1109/icra.2017.7989264 – 10.1109/icra.2017.7989264
- Crittenden, (2012)
- De Paolis, A. et al. Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hearing Research vol. 349 111–128 (2017) – 10.1016/j.heares.2017.01.015
- Everest, (2001)
- Gan, R. Z., Feng, B. & Sun, Q. Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission. Annals of Biomedical Engineering vol. 32 847–859 (2004) – 10.1023/b:abme.0000030260.22737.53
- Gan, R. Z., Sun, Q., Feng, B. & Wood, M. W. Acoustic–structural coupled finite element analysis for sound transmission in human ear—Pressure distributions. Medical Engineering & Physics vol. 28 395–404 (2006) – 10.1016/j.medengphy.2005.07.018
- Gan, R. Z., Feng, B. & Sun, Q. Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission. Annals of Biomedical Engineering vol. 32 847–859 (2004) – 10.1023/b:abme.0000030260.22737.53
- Gigure, A computational model of the auditory periphery for speech and hearing research. i. ascending path. The Journal of the Acoustical Society of America (1993)
- Goll, E. & Dalhoff, E. Modeling the eardrum as a string with distributed force. The Journal of the Acoustical Society of America vol. 130 1452–1462 (2011) – 10.1121/1.3613934
- Khanna, Specification of the acoustical input to the ear at high frequencies. The Journal of the Acoustical Society of America“ (1985)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Madahana, M. C. I., Ekoru, J. E. D., Mashinini, T. L. & Nyandoro, O. T. C. Noise level policy advising system for mine workers. IFAC-PapersOnLine vol. 52 249–254 (2019) – 10.1016/j.ifacol.2019.09.195
- Madahana, M. C. I., Ekoru, J. E. D. & Nyandoro, O. T. C. Smart automated noise policy monitoring and feedback control system for mining application. IFAC-PapersOnLine vol. 52 177–182 (2019) – 10.1016/j.ifacol.2019.09.184
- Madahana, M. C. I., Ekoru, J. E. D., Mashinini, T. L. & Nyandoro, O. T. C. Mine workers threshold shift estimation via optimization algorithms for deep recurrent neural networks. IFAC-PapersOnLine vol. 52 117–122 (2019) – 10.1016/j.ifacol.2019.09.174
- Mora, L. A., Yuz, J. I., Ramirez, H. & Gorrec, Y. L. A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds . IFAC-PapersOnLine vol. 51 62–67 (2018) – 10.1016/j.ifacol.2018.06.016
- Onchi, Y. Mechanism of the Middle Ear. The Journal of the Acoustical Society of America vol. 33 794–805 (1961) – 10.1121/1.1908801
- Šešlija, M., van der Schaft, A. & Scherpen, J. M. A. Reaction-Diffusion Systems in the Port-Hamiltonian Framework. IFAC Proceedings Volumes vol. 43 837–842 (2010) – 10.3182/20100901-3-it-2016.00116
- van der Schaft, (2006)
- Wiener, The pressure distribution in the auditory canal in a progressive sound field. The Journal of the Acoustical Society of America (1946)
- Xue, F. et al. The biological significance of acoustic stimuli determines ear preference in the music frog. Journal of Experimental Biology vol. 218 740–747 (2015) – 10.1242/jeb.114694
- Zwislocki, J. Some Impedance Measurements on Normal and Pathological Ears. The Journal of the Acoustical Society of America vol. 29 1312–1317 (1957) – 10.1121/1.1908776