A Human Inner Ear Model for assessment of Noise Induced Hearing Loss via energy methods
Authors
Milka C.I. Madahana, Otis T.C. Nyandoro, John E.D. Ekoru
Abstract
The main objective of this paper is to present a novel Port-Hamiltonian based model of the human inner ear. This model can be used in the assessment and diagnosis of the human inner ear diseases, for instance, Noise Induced Hearing Loss. It may also be used for understanding of sound transmission in the inner ear. The Cochlear Partition is modelled as a pair of Euler-Bernoulli beams coupled together by a linear massless distributed spring. The fluids in the Scala Vestibuli and Scala Tympani are also included in the model. The Cochlear displacement velocity is mainly enhanced by the Outer Hair Cells activities. For frequencies greater than 1 KHz the enhancements become very significant. The developed model also includes the outer hair cells. The model was validated against existing inner ear models and the results were found to be comparable. Future improvements to the model would involve inclusion of the auditory nerve to the model.
Keywords
Port Hamiltonian; Euler Bernoulli; Noise; frequency; Cochlear
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 16424–16429
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.727
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Madahana_2020,
title={{A Human Inner Ear Model for assessment of Noise Induced Hearing Loss via energy methods}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.727},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Madahana, Milka C.I. and Nyandoro, Otis T.C. and Ekoru, John E.D.},
year={2020},
pages={16424--16429}
}
References
- Beyer, R. P., Jr. A computational model of the cochlea using the immersed boundary method. Journal of Computational Physics vol. 98 145–162 (1992) – 10.1016/0021-9991(92)90180-7
- Cohen, A. & Furst, M. Integration of outer hair cell activity in a one-dimensional cochlear model. The Journal of the Acoustical Society of America vol. 115 2185–2192 (2004) – 10.1121/1.1699391
- Edom, E., Obrist, D. & Kleiser, L. Steady streaming in a two-dimensional box model of a passive cochlea. Journal of Fluid Mechanics vol. 753 254–278 (2014) – 10.1017/jfm.2014.360
- Elliott, S. J., Ni, G., Mace, B. R. & Lineton, B. A wave finite element analysis of the passive cochlea. The Journal of the Acoustical Society of America vol. 133 1535–1545 (2013) – 10.1121/1.4790350
- Furst, Cochlear model for hearing loss. (2015)
- Gan, R. Z., Sun, Q., Feng, B. & Wood, M. W. Acoustic–structural coupled finite element analysis for sound transmission in human ear—Pressure distributions. Medical Engineering & Physics vol. 28 395–404 (2006) – 10.1016/j.medengphy.2005.07.018
- Gan, R. Z., Feng, B. & Sun, Q. Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission. Annals of Biomedical Engineering vol. 32 847–859 (2004) – 10.1023/b:abme.0000030260.22737.53
- Goll, E. & Dalhoff, E. Modeling the eardrum as a string with distributed force. The Journal of the Acoustical Society of America vol. 130 1452–1462 (2011) – 10.1121/1.3613934
- Inselberg, A. & Chadwick, R. S. Mathematical Model of the Cochlea. I: Formulation and Solution. SIAM Journal on Applied Mathematics vol. 30 149–163 (1976) – 10.1137/0130018
- Jang, J. et al. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model. Scientific Reports vol. 5 (2015) – 10.1038/srep12447
- Landau, (1987)
- Lee, H. Y. et al. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Journal of Neuroscience vol. 36 8160–8173 (2016) – 10.1523/jneurosci.1157-16.2016
- Lim, K.-M. & Steele, C. R. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hearing Research vol. 170 190–205 (2002) – 10.1016/s0378-5955(02)00491-4
- Madahana, M. C. I., Ekoru, J. E. D., Mashinini, T. L. & Nyandoro, O. T. C. Noise level policy advising system for mine workers. IFAC-PapersOnLine vol. 52 249–254 (2019) – 10.1016/j.ifacol.2019.09.195
- Madahana, M. C. I., Ekoru, J. E. D. & Nyandoro, O. T. C. Smart automated noise policy monitoring and feedback control system for mining application. IFAC-PapersOnLine vol. 52 177–182 (2019) – 10.1016/j.ifacol.2019.09.184
- Madahana, M. C. I., Ekoru, J. E. D., Mashinini, T. L. & Nyandoro, O. T. C. Mine workers threshold shift estimation via optimization algorithms for deep recurrent neural networks. IFAC-PapersOnLine vol. 52 117–122 (2019) – 10.1016/j.ifacol.2019.09.174
- Matignon, D. & Hélie, T. A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems. European Journal of Control vol. 19 486–494 (2013) – 10.1016/j.ejcon.2013.10.003
- Mora, L. A., Yuz, J. I., Ramirez, H. & Gorrec, Y. L. A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds . IFAC-PapersOnLine vol. 51 62–67 (2018) – 10.1016/j.ifacol.2018.06.016
- Ni, G., Sun, L. & Elliott, S. J. A linearly tapered box model of the cochlea. The Journal of the Acoustical Society of America vol. 141 1793–1803 (2017) – 10.1121/1.4977750
- Ramamoorthy, S., Deo, N. V. & Grosh, K. A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli. The Journal of the Acoustical Society of America vol. 121 2758–2773 (2007) – 10.1121/1.2713725
- Reichenbach, T. & Hudspeth, A. J. The physics of hearing: fluid mechanics and the active process of the inner ear. Reports on Progress in Physics vol. 77 076601 (2014) – 10.1088/0034-4885/77/7/076601
- Tonndorf, J. Beats in Cochlear Models. The Journal of the Acoustical Society of America vol. 31 124–124 (1959) – 10.1121/1.1930177
- Trenchant, V., Fares, Y., Ramirez, H. & Le Gorrec, Y. A port-Hamiltonian formulation of a 2D boundary controlled acoustic system. IFAC-PapersOnLine vol. 48 235–240 (2015) – 10.1016/j.ifacol.2015.10.245
- van der Schaft, Port-Hamiltonian systems: an introductory survey (2006)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Yoon, Y., Puria, S. & Steele, C. A cochlear model using the time-averaged Lagrangian and the push-pull mechanism in the organ of Corti. Journal of Mechanics of Materials and Structures vol. 4 977–986 (2009) – 10.2140/jomms.2009.4.977
- Zhang, X. & Gan, R. Z. Finite element modeling of energy absorbance in normal and disordered human ears. Hearing Research vol. 301 146–155 (2013) – 10.1016/j.heares.2012.12.005