On the Hamiltonian formulation of the CSTR
Authors
Hector Ramirez, Bernhard Maschke, Daniel Sbarbaro
Abstract
In this paper we suggest some alternative representations of the Continuous Stirred Tank Reactor (CSTR) in terms of port-controlled Hamiltonian (PCH) and contact systems, elaborating on some recent work on this subject. In a first instance we suggest a PCH formulation of the CSTR in the isothermal case, generated by a Hamiltonian being a reaction invariant with a Poisson structure matrix defined by the stoichiometric coefficients of the reaction or reaction network. In a second instance we include the energy balance equation and suggest a pseudo port Hamiltonian formulation with Hamiltonian function being either the internal energy or the entropy. In a third instance we consider the lift of the latter formulation on the whole Thermodynamic Phase Space and discuss two alternative formulations differing outside the Legendre submanifold associated with the thermodynamic properties of the CSTR.
Citation
- Journal: 49th IEEE Conference on Decision and Control (CDC)
- Year: 2010
- Volume:
- Issue:
- Pages: 3301–3306
- Publisher: IEEE
- DOI: 10.1109/cdc.2010.5717317
BibTeX
@inproceedings{Ramirez_2010,
title={{On the Hamiltonian formulation of the CSTR}},
DOI={10.1109/cdc.2010.5717317},
booktitle={{49th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Ramirez, Hector and Maschke, Bernhard and Sbarbaro, Daniel},
year={2010},
pages={3301--3306}
}
References
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Structured modeling for processes: A thermodynamical network theory. Computers & Chemical Engineering vol. 32 1120–1134 (2008) – 10.1016/j.compchemeng.2007.04.012
- Otero-Muras, I., Szederkényi, G., Alonso, A. A. & Hangos, K. M. Local dissipative Hamiltonian description of reversible reaction networks. Systems & Control Letters vol. 57 554–560 (2008) – 10.1016/j.sysconle.2007.12.003
- Smale, S. On the mathematical foundations of electrical circuit theory. Journal of Differential Geometry vol. 7 (1972) – 10.4310/jdg/1214430827
- Grmela, M. Reciprocity relations in thermodynamics. Physica A: Statistical Mechanics and its Applications vol. 309 304–328 (2002) – 10.1016/s0378-4371(02)00564-2
- sandler, Chemical Biochemical and Engineering Thermodynamics (2006)
- Favache, A. & Dochain, D. Thermodynamics and chemical systems stability: The CSTR case study revisited. Journal of Process Control vol. 19 371–379 (2009) – 10.1016/j.jprocont.2008.07.007
- favache, Contact structures: application to interconnected thermodynamical systems. Proceedings of the European Control Conference (2007)
- Alberty, R. A. Use of Legendre transforms in chemical thermodynamics (IUPAC Technical Report). Pure and Applied Chemistry vol. 73 1349–1380 (2001) – 10.1351/pac200173081349
- eberard, Port contact systems for irreversible thermodynamic systems. Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference 2005 (2005)
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- hoang, Port Hamiltonian based modelling and control of exothermic continuous stirred tank reactors. Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems NOLCOS (2010)
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Favache, A., Dos Santos Martins, V. S., Dochain, D. & Maschke, B. Some Properties of Conservative Port Contact Systems. IEEE Transactions on Automatic Control vol. 54 2341–2351 (2009) – 10.1109/tac.2009.2028973
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- aris, Elementary Chemical Reactor Analysis (1969)
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Hangos, K. M., Bokor, J. & Szederkényi, G. Hamiltonian view on process systems. AIChE Journal vol. 47 1819–1831 (2001) – 10.1002/aic.690470813
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems vol. 12 159–174 (2006) – 10.1080/13873950500068823