A Port-Hamiltonian Formulation of Open Chemical Reaction Networks
Authors
Arjan van der Schaft, Bernhard Maschke
Abstract
This paper discusses the geometric formulation of the dynamics of chemical reaction networks within the port-Hamiltonian formalism [10, 9, 6]. The basic idea dates back to the innovative work of Oster, Perselson and Katchalsky [8, 7]. The main contribution concerns the formulation of a Dirac structure based on the stoichiometric matrix, which is underlying the port-Hamiltonian formulation. Interaction with the environment is modelled through the boundary metabolites and their boundary fluxes and affinities. This allows a compositional view on chemical reaction network dynamics.
Keywords
Reaction Network; Resistive Relation; Dirac Structure; Bond Graph; Stoichiometric Matrix
Citation
- ISBN: 9783642161346
- Publisher: Springer Berlin Heidelberg
- DOI: 10.1007/978-3-642-16135-3_27
BibTeX
@inbook{van_der_Schaft_2010,
title={{A Port-Hamiltonian Formulation of Open Chemical Reaction Networks}},
ISBN={9783642161353},
ISSN={1610-7411},
DOI={10.1007/978-3-642-16135-3_27},
booktitle={{Advances in the Theory of Control, Signals and Systems with Physical Modeling}},
publisher={Springer Berlin Heidelberg},
author={van der Schaft, Arjan and Maschke, Bernhard},
year={2010},
pages={339--348}
}
References
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems 12, 159–174 (2006) – 10.1080/13873950500068823
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- Craciun, G. & Feinberg, M. Multiple Equilibria in Complex Chemical Reaction Networks: II. The Species-Reaction Graph. SIAM J. Appl. Math. 66, 1321–1338 (2006) – 10.1137/050634177
- Angeli, D., De Leenheer, P. & Sontag, E. D. A Petri net approach to the study of persistence in chemical reaction networks. Mathematical Biosciences 210, 598–618 (2007) – 10.1016/j.mbs.2007.07.003
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics 60, 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Modeling and Control of Complex Physical Systems; the Port-Hamiltonian Approach (2009)
- Oster, G. F., Perelson, A. S. & Katchalsky, A. Network thermodynamics: dynamic modelling of biophysical systems. Quart. Rev. Biophys. 6, 1–134 (1973) – 10.1017/s0033583500000081
- Oster, G. F. & Perelson, A. S. Chemical reaction dynamics. Arch. Rational Mech. Anal. 55, 230–274 (1974) – 10.1007/bf00281751
- A.J. Schaft van der, L 2-Gain and Passivity Techniques in Nonlinear Control (1996)
- A.J. Schaft van der, Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A. & Maschke, B. Conservation Laws and Lumped System Dynamics. Model-Based Control: 31–48 (2009) doi:10.1007/978-1-4419-0895-7_3 – 10.1007/978-1-4419-0895-7_3