Port-Controlled Phasor Hamiltonian Modeling and IDA-PBC Control of Solid-State Transformer
Authors
Ragini V. Meshram, Monika Bhagwat, Shubhangi Khade, Sushama R. Wagh, Aleksandar M. Stankovic, Navdeep M. Singh
Abstract
This paper presents an application of interconnection and damping assignment passivity-based control (IDA-PBC) principle to the port-controlled phasor Hamiltonian (PCPH) model of solid-state transformer (SST) (comprising of three stages, namely, ac/dc rectifier, dual active bridge converter, and dc/ac inverter). A PCPH model of SST is established for each individual stages using dynamic phasor concept. In comparison with other PBC approaches, IDA-PBC offers an additional degree of freedom to solve the partial differential equations. According to the target of the controller design at each stage, the desired equilibrium point of the system is obtained. The closed-loop system performance achieves regulation of constant output dc-bus voltage and unity input power factor. Large-signal simulation results for the full system validate the simplifications introduced to obtain the controller and verify the proposed controller. Robustness of the controller is demonstrated with 20% load disturbance and 10% input disturbance. For validation of the proposed approach and its effectiveness, hardware-in-loop simulation is carried out using Opal-RT and dSPACE simulators.
Citation
- Journal: IEEE Transactions on Control Systems Technology
- Year: 2019
- Volume: 27
- Issue: 1
- Pages: 161–174
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tcst.2017.2761866
BibTeX
@article{Meshram_2019,
title={{Port-Controlled Phasor Hamiltonian Modeling and IDA-PBC Control of Solid-State Transformer}},
volume={27},
ISSN={2374-0159},
DOI={10.1109/tcst.2017.2761866},
number={1},
journal={IEEE Transactions on Control Systems Technology},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Meshram, Ragini V. and Bhagwat, Monika and Khade, Shubhangi and Wagh, Sushama R. and Stankovic, Aleksandar M. and Singh, Navdeep M.},
year={2019},
pages={161--174}
}
References
- Tadmor, G. On approximate phasor models in dissipative bilinear systems. IEEE Trans. Circuits Syst. I 49, 1167–1179 (2002) – 10.1109/tcsi.2002.801251
- Almér, S. & Jönsson, U. Harmonic analysis of pulse-width modulated systems. Automatica 45, 851–862 (2009) – 10.1016/j.automatica.2008.10.029
- Griñó, R., Fossas, E. & Biel, D. Sliding mode control of a full-bridge unity power factor rectifier. Lecture Notes in Control and Information Sciences 139–148 doi:10.1007/3-540-45802-6_11 – 10.1007/3-540-45802-6_11
- Gerardo, D., Palacios, E. & Cardenas, V. Interconnection and Damping Passivity-Based Control applied to a single-phase voltage source inverter. 12th IEEE International Power Electronics Congress 229–234 (2010) doi:10.1109/ciep.2010.5598907 – 10.1109/ciep.2010.5598907
- Ds1104 r&d controller board (2017)
- Powering Real-Time Simulation (2017)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Hengsi Qin & Kimball, J. W. Generalized Average Modeling of Dual Active Bridge DC–DC Converter. IEEE Trans. Power Electron. 27, 2078–2084 (2012) – 10.1109/tpel.2011.2165734
- Parimi, M., Monika, M., Rane, M., Wagh, S. & Stankovic, A. Dynamic phasor-based small-signal stability analysis and control of solid state transformer. 2016 IEEE 6th International Conference on Power Systems (ICPS) 1–6 (2016) doi:10.1109/icpes.2016.7584183 – 10.1109/icpes.2016.7584183
- segaran, Dynamic modelling and control of dual active bridge Bi-directional DC–DC converters for smart grid applications. (2013)
- qin, Dual active bridge converters in solid state transformers. (2012)
- Shah, D. G. & Crow, M. L. Stability Design Criteria for Distribution Systems With Solid-State Transformers. IEEE Trans. Power Delivery 29, 0–0 (2014) – 10.1109/tpwrd.2014.2311963
- Perez, M., Ortega, R. & Espinoza, J. Passivity-Based PI Control of Switched Power Converters. IEEE Trans. Contr. Syst. Technol. 12, 881–890 (2004) – 10.1109/tcst.2004.833628
- ortega, Energy-shaping stabilization of dynamical systems. (2003)
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Mendez, J., Garcia, Y. & Mata, M. T. Three-Phase Power Converter Stabilization via Total Energy-Shaping. 2006 1ST IEEE Conference on Industrial Electronics and Applications 1–6 (2006) doi:10.1109/iciea.2006.257375 – 10.1109/iciea.2006.257375
- batlle, Generalized state space averaging for port controlled Hamiltonian systems. Proc 16th IFAC World Congr (2005)
- Mu, X., Wang, J., Xiang, H., Ma, Y. & Yang, D. Study on a nonlinear control strategy for three-phase voltage sources PWM DC/AC inverter based on PCH model. 2011 International Conference on Electrical Machines and Systems 1–4 (2011) doi:10.1109/icems.2011.6073427 – 10.1109/icems.2011.6073427
- Zhao, T., Zeng, J., Bhattacharya, S., Baran, M. E. & Huang, A. Q. An average model of solid state transformer for dynamic system simulation. 2009 IEEE Power & Energy Society General Meeting 1–8 (2009) doi:10.1109/pes.2009.5275542 – 10.1109/pes.2009.5275542
- Batlle, C., Doria-Cerezo, A. & Fossas, E. IDA-PBC controller for a bidirectional power flow full-bridge rectifier. Proceedings of the 44th IEEE Conference on Decision and Control 422–426 doi:10.1109/cdc.2005.1582192 – 10.1109/cdc.2005.1582192
- wang, Design and operation of a 3.6 kV high performance solid state transformer based on 13 kV SiC MOSFET and JBS diode. Proc IEEE Energy Convers Congr Expo (ECCE) (2014)
- Almer, S., Mariethoz, S. & Morari, M. Dynamic Phasor Model Predictive Control of Switched Mode Power Converters. IEEE Trans. Contr. Syst. Technol. 23, 349–356 (2015) – 10.1109/tcst.2014.2317775
- Bottcher, M., Dannehl, J. & Fuchs, F. W. Interconnection and damping assignment passivity-based current control of grid-connected PWM converter with LCL-filter. Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010 T3-20-T3-26 (2010) doi:10.1109/epepemc.2010.5606817 – 10.1109/epepemc.2010.5606817
- Sanders, S. R., Noworolski, J. M., Liu, X. Z. & Verghese, G. C. Generalized averaging method for power conversion circuits. IEEE Trans. Power Electron. 6, 251–259 (1991) – 10.1109/63.76811
- yang, Development of dynamic phasors for the modelling of aircraft electrical power systems. (2013)
- Bacha, S., Munteanu, I. & Bratcu, A. I. Power Electronic Converters Modeling and Control. Advanced Textbooks in Control and Signal Processing (Springer London, 2014). doi:10.1007/978-1-4471-5478-5 – 10.1007/978-1-4471-5478-5
- Yu, Z., Ayyanar, R. & Husain, I. A detailed analytical model of a solid state transformer. 2015 IEEE Energy Conversion Congress and Exposition (ECCE) 723–729 (2015) doi:10.1109/ecce.2015.7309761 – 10.1109/ecce.2015.7309761
- Nagarajan, A. & Ayyanar, R. Dynamic phasor model of single-phase inverters for analysis and simulation of large power distribution systems. 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG) 1–6 (2013) doi:10.1109/pedg.2013.6785591 – 10.1109/pedg.2013.6785591
- Huang, A. Q., Crow, M. L., Heydt, G. T., Zheng, J. P. & Dale, S. J. The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet. Proc. IEEE 99, 133–148 (2011) – 10.1109/jproc.2010.2081330
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Escobar, G., Chevreau, D., Ortega, R. & Mendes, E. An adaptive passivity-based controller for a unity power factor rectifier. IEEE Trans. Contr. Syst. Technol. 9, 637–644 (2001) – 10.1109/87.930975
- Gaviria, C., Fossas, E. & Grino, R. Robust controller for a full-bridge rectifier using the IDA approach and GSSA modeling. IEEE Trans. Circuits Syst. I 52, 609–616 (2005) – 10.1109/tcsi.2004.842881
- Komurcugil, H. Steady-State Analysis and Passivity-Based Control of Single-Phase PWM Current-Source Inverters. IEEE Trans. Ind. Electron. 57, 1026–1030 (2010) – 10.1109/tie.2009.2025297
- dòria-cerezo, Modeling, simulation and control of doubly-fed induction machine controlled by back-to-back converter. (2006)
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Komurcugil, H. Improved passivity‐based control method and its robustness analysis for single‐phase uninterruptible power supply inverters. IET Power Electronics 8, 1558–1570 (2015) – 10.1049/iet-pel.2014.0706