Output feedback based simultaneous stabilization of two Port-controlled Hamiltonian systems with disturbances
Authors
Baozeng Fu, Shihua Li, Xiangyu Wang, Lei Guo
Abstract
In motor system control design, a single controller is usually employed to simultaneously control two or more motors for saving costs, which also achieves the computational simplification of control. In practical Hamiltonian systems control, more systems also need to be stabilized by a single controller under some working conditions. Thus, this paper studies simultaneous stabilization problem of two nonlinear Port-controlled Hamiltonian (PCH) systems with disturbances by a composite controller. Based on the Hamiltonian structure properties, two PCH systems are combined together to generate an augmented PCH system by utilizing output feedbacks firstly. Then, to estimate disturbances effectively, it is essential to design a nonlinear disturbance observer (NDOB) and the estimate is employed to feedforward compensate the effects of disturbances. Next, combining the output feedback part and the disturbance compensation part together, a simultaneous stabilization controller is developed. Subsequently, it is proved that the closed-loop system under the proposed controller is asymptotically stable. Finally, an example with simulations reveals that the proposed method is effective.
Citation
- Journal: Journal of the Franklin Institute
- Year: 2019
- Volume: 356
- Issue: 15
- Pages: 8154–8166
- Publisher: Elsevier BV
- DOI: 10.1016/j.jfranklin.2019.02.039
BibTeX
@article{Fu_2019,
title={{Output feedback based simultaneous stabilization of two Port-controlled Hamiltonian systems with disturbances}},
volume={356},
ISSN={0016-0032},
DOI={10.1016/j.jfranklin.2019.02.039},
number={15},
journal={Journal of the Franklin Institute},
publisher={Elsevier BV},
author={Fu, Baozeng and Li, Shihua and Wang, Xiangyu and Guo, Lei},
year={2019},
pages={8154--8166}
}
References
- Afkham, B. M. & Hesthaven, J. S. Structure Preserving Model Reduction of Parametric Hamiltonian Systems. SIAM J. Sci. Comput. 39, A2616–A2644 (2017) – 10.1137/17m1111991
- Chen, W.-H., Yang, J., Guo, L. & Li, S. Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Trans. Ind. Electron. 63, 1083–1095 (2016) – 10.1109/tie.2015.2478397
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45, 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Ferguson, J., Donaire, A. & Middleton, R. H. Integral Control of Port-Hamiltonian Systems: Nonpassive Outputs Without Coordinate Transformation. IEEE Trans. Automat. Contr. 62, 5947–5953 (2017) – 10.1109/tac.2017.2700995
- Guo, (2013)
- Guo, L. & Cao, S. Anti-disturbance control theory for systems with multiple disturbances: A survey. ISA Transactions 53, 846–849 (2014) – 10.1016/j.isatra.2013.10.005
- Guo, L. & Chen, W.-H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15, 109–125 (2005) – 10.1002/rnc.978
- Jagtap, P. & Zamani, M. Backstepping Design for Incremental Stability of Stochastic Hamiltonian Systems with Jumps. IEEE Trans. Automat. Contr. 63, 255–261 (2018) – 10.1109/tac.2017.2720592
- Khalil, (2002)
- Li, S., Yang, J., Chen, W.-H. & Chen, X. Generalized Extended State Observer Based Control for Systems With Mismatched Uncertainties. IEEE Trans. Ind. Electron. 59, 4792–4802 (2012) – 10.1109/tie.2011.2182011
- Li, W., Wang, L. & Yu, W. Some Open Problems on Simultaneous Stabilization of Linear Systems. J Syst Sci Complex 29, 289–299 (2016) – 10.1007/s11424-015-4182-1
- Li, (2014)
- Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Trans. Automat. Contr. 50, 60–75 (2005) – 10.1109/tac.2004.840477
- Ryan, E. P. On Simultaneous Stabilization by Feedback of Finitely Many Oscillators. IEEE Trans. Automat. Contr. 60, 1110–1114 (2015) – 10.1109/tac.2014.2341893
- Shen, T., Mei, S., Lu, Q., Hu, W. & Tamura, K. Adaptive nonlinear excitation control with L2 disturbance attenuation for power systems. Automatica 39, 81–89 (2003) – 10.1016/s0005-1098(02)00175-9
- Sun, H. & Guo, L. Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances. Journal of the Franklin Institute 351, 1027–1041 (2014) – 10.1016/j.jfranklin.2013.10.002
- Sun, Stabilization analysis of time-delay hamiltonian systems in the presence of saturation. Appl. Math. Comput. (2011)
- Sun, W. & Fu, B. Adaptive control of time‐varying uncertain non‐linear systems with input delay: a Hamiltonian approach. IET Control Theory & Appl 10, 1844–1858 (2016) – 10.1049/iet-cta.2015.1165
- Sun, W. & Peng, L. Observer-based robust adaptive control for uncertain stochastic Hamiltonian systems with state and input delays. NAMC 19, 626–645 (2014) – 10.15388/na.2014.4.8
- Sun, W. & Peng, L. Robust Adaptive Control of Uncertain Stochastic Hamiltonian Systems with Time Varying Delay. Asian Journal of Control 18, 642–651 (2015) – 10.1002/asjc.1143
- Schaft, The hamiltonian formulation of energy conserving physical systems with external ports. Archive für Elektronik und bertragungstechnik (1995)
- Wang, Y., Miao, Z., Zhong, H. & Pan, Q. Simultaneous Stabilization and Tracking of Nonholonomic Mobile Robots: A Lyapunov-Based Approach. IEEE Trans. Contr. Syst. Technol. 23, 1440–1450 (2015) – 10.1109/tcst.2014.2375812
- Wang, Generalized hamiltonian control systems theory-realization. (2007)
- Wang, Y., Feng, G. & Cheng, D. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica 43, 403–415 (2007) – 10.1016/j.automatica.2006.09.008
- Wei, X. & Guo, L. Composite disturbance‐observer‐based control andH∞control for complex continuous models. Intl J Robust & Nonlinear 20, 106–118 (2009) – 10.1002/rnc.1425
- Yang, J., Chen, W.-H. & Li, S. Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory Appl. 5, 2053–2062 (2011) – 10.1049/iet-cta.2010.0616
- Yang, J., Chen, W.-H., Li, S., Guo, L. & Yan, Y. Disturbance/Uncertainty Estimation and Attenuation Techniques in PMSM Drives—A Survey. IEEE Trans. Ind. Electron. 64, 3273–3285 (2017) – 10.1109/tie.2016.2583412
- Du, H., Chen, X., Wen, G., Yu, X. & Lu, J. Discrete-Time Fast Terminal Sliding Mode Control for Permanent Magnet Linear Motor. IEEE Trans. Ind. Electron. 65, 9916–9927 (2018) – 10.1109/tie.2018.2815942
- Zhu, Y. & Yang, F. Simultaneous H 2/H ∞ stabilization for chemical reaction systems based on orthogonal complement space. Int. J. Autom. Comput. 13, 19–30 (2015) – 10.1007/s11633-015-0907-9
- Wang, R. & Fei, S. Output tracking for nonlinear discrete-time systems via fuzzy control approach. Journal of the Franklin Institute 352, 4147–4162 (2015) – 10.1016/j.jfranklin.2015.06.009
- Du, H., He, Y. & Cheng, Y. Finite-Time Synchronization of a Class of Second-Order Nonlinear Multi-Agent Systems Using Output Feedback Control. IEEE Trans. Circuits Syst. I 61, 1778–1788 (2014) – 10.1109/tcsi.2013.2295012