Finite-time disturbance reconstruction and robust fractional-order controller design for hybrid port-Hamiltonian dynamics of biped robots
Authors
Abstract
In this paper, disturbance reconstruction and robust trajectory tracking control of biped robots with hybrid dynamics in the port-Hamiltonian form is investigated. A new type of Hamiltonian function is introduced, which ensures the finite-time stability of the closed-loop system. The proposed control system consists of two loops: an inner and an outer loop. A fractional proportional–integral–derivative filter is used to achieve finite-time convergence for position tracking errors at the outer loop. A fractional-order sliding mode controller acts as a centralized controller at the inner-loop, ensuring the finite-time stability of the velocity tracking error. In this loop, the undesired effects of unknown external disturbance and parameter uncertainties are compensated using estimators. Two disturbance estimators are envisioned. The former is designed using fractional calculus. The latter is an adaptive estimator, and it is constructed using the general dynamic of biped robots. Stability analysis shows that the closed-loop system is finite-time stable in both contact-less and impact phases. Simulation studies on three types of biped robots (i.e., two-link walker, RABBIT biped robot, and flat-feet biped robot) demonstrate the proposed controller’s tracking performance and disturbance rejection capability.
Keywords
Bipedal robots; Hybrid systems; Port-Hamiltonian dynamics; Fractional sliding surface; Finite-time control; Disturbance estimator
Citation
- Journal: Robotics and Autonomous Systems
- Year: 2021
- Volume: 144
- Issue:
- Pages: 103836
- Publisher: Elsevier BV
- DOI: 10.1016/j.robot.2021.103836
BibTeX
@article{Farid_2021,
title={{Finite-time disturbance reconstruction and robust fractional-order controller design for hybrid port-Hamiltonian dynamics of biped robots}},
volume={144},
ISSN={0921-8890},
DOI={10.1016/j.robot.2021.103836},
journal={Robotics and Autonomous Systems},
publisher={Elsevier BV},
author={Farid, Yousef and Ruggiero, Fabio},
year={2021},
pages={103836}
}
References
- Siciliano, (2009)
- Chevallereau, C., Grizzle, J. W. & Ching-Long Shih. Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot. IEEE Transactions on Robotics vol. 25 37–50 (2009) – 10.1109/tro.2008.2010366
- Hawley, L. & Suleiman, W. Control framework for cooperative object transportation by two humanoid robots. Robotics and Autonomous Systems vol. 115 1–16 (2019) – 10.1016/j.robot.2019.02.003
- Yamamoto, K. Control strategy switching for humanoid robots based on maximal output admissible set. Robotics and Autonomous Systems vol. 81 17–32 (2016) – 10.1016/j.robot.2016.03.010
- Kuindersma, S. et al. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots vol. 40 429–455 (2015) – 10.1007/s10514-015-9479-3
- Yeon, J. S. & Park, J. H. A Fast Turning Method for Biped Robots With Foot Slip During Single-Support Phase. IEEE/ASME Transactions on Mechatronics vol. 19 1847–1858 (2014) – 10.1109/tmech.2014.2316007
- Hereid, A., Hubicki, C. M., Cousineau, E. A. & Ames, A. D. Dynamic Humanoid Locomotion: A Scalable Formulation for HZD Gait Optimization. IEEE Transactions on Robotics vol. 34 370–387 (2018) – 10.1109/tro.2017.2783371
- Van der Noot, N., Ijspeert, A. J. & Ronsse, R. Neuromuscular model achieving speed control and steering with a 3D bipedal walker. Autonomous Robots vol. 43 1537–1554 (2018) – 10.1007/s10514-018-9814-6
- Farid, Y., Majd, V. J. & Ehsani‐Seresht, A. Observer‐based robust adaptive force‐position controller design for quadruped robots with actuator faults. International Journal of Adaptive Control and Signal Processing vol. 32 1453–1472 (2018) – 10.1002/acs.2923
- Evolving a Sensory–Motor Interconnection Structure for Adaptive Biped Robot Locomotion. IEEE Transactions on Cognitive and Developmental Systems vol. 11 244–256 (2019) – 10.1109/tcds.2018.2863032
- Saputra, A. A., Botzheim, J., Sulistijono, I. A. & Kubota, N. Biologically Inspired Control System for 3-D Locomotion of a Humanoid Biped Robot. IEEE Transactions on Systems, Man, and Cybernetics: Systems vol. 46 898–911 (2016) – 10.1109/tsmc.2015.2497250
- Lin, Y.-C., Righetti, L. & Berenson, D. Robust Humanoid Contact Planning With Learned Zero- and One-Step Capturability Prediction. IEEE Robotics and Automation Letters vol. 5 2451–2458 (2020) – 10.1109/lra.2020.2972825
- Farid, Dynamic-free robust adaptive intelligent fault-tolerant controller design with prescribed performance for stable motion of quadruped robots. Adapt. Behav. (2019)
- Grizzle, J. W., Chevallereau, C., Sinnet, R. W. & Ames, A. D. Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica vol. 50 1955–1988 (2014) – 10.1016/j.automatica.2014.04.021
- Akbari Hamed, K. & Gregg, R. D. Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking. IEEE Transactions on Control Systems Technology vol. 25 1153–1167 (2017) – 10.1109/tcst.2016.2597741
- Hamed, K. A. & Gregg, R. D. Decentralized Event-Based Controllers for Robust Stabilization of Hybrid Periodic Orbits: Application to Underactuated 3-D Bipedal Walking. IEEE Transactions on Automatic Control vol. 64 2266–2281 (2019) – 10.1109/tac.2018.2863184
- Hamed, K. A., Sadati, N., Gruver, W. A. & Dumont, G. A. Stabilization of Periodic Orbits for Planar Walking With Noninstantaneous Double-Support Phase. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans vol. 42 685–706 (2012) – 10.1109/tsmca.2011.2169246
- Gritli, H. & Belghith, S. Walking dynamics of the passive compass-gait model under OGY-based control: Emergence of bifurcations and chaos. Communications in Nonlinear Science and Numerical Simulation vol. 47 308–327 (2017) – 10.1016/j.cnsns.2016.11.022
- Akbari Hamed, K. & Grizzle, J. W. Reduced-order framework for exponential stabilization of periodic orbits on parameterized hybrid zero dynamics manifolds: Application to bipedal locomotion. Nonlinear Analysis: Hybrid Systems vol. 25 227–245 (2017) – 10.1016/j.nahs.2016.08.006
- Zachariah, S. K. & Kurian, T. Hybrid-state driven autonomous control for planar bipedal locomotion. Robotics and Autonomous Systems vol. 83 115–137 (2016) – 10.1016/j.robot.2016.05.013
- Kolathaya, S. & Ames, A. D. Parameter to state stability of control Lyapunov functions for hybrid system models of robots. Nonlinear Analysis: Hybrid Systems vol. 25 174–191 (2017) – 10.1016/j.nahs.2016.09.003
- Gritli, H. & Belghith, S. Computation of the Lyapunov exponents in the compass-gait model under OGY control via a hybrid Poincaré map. Chaos, Solitons & Fractals vol. 81 172–183 (2015) – 10.1016/j.chaos.2015.09.011
- Veer, S., Rakesh & Poulakakis, I. Input-to-State Stability of Periodic Orbits of Systems With Impulse Effects via Poincaré Analysis. IEEE Transactions on Automatic Control vol. 64 4583–4598 (2019) – 10.1109/tac.2019.2909684
- Wang, T. & Chevallereau, C. Stability analysis and time-varying walking control for an under-actuated planar biped robot. Robotics and Autonomous Systems vol. 59 444–456 (2011) – 10.1016/j.robot.2011.03.002
- Znegui, W., Gritli, H. & Belghith, S. Design of an explicit expression of the Poincaré map for the passive dynamic walking of the compass-gait biped model. Chaos, Solitons & Fractals vol. 130 109436 (2020) – 10.1016/j.chaos.2019.109436
- Yazdi-Mirmokhalesouni, S. D., Sharbafi, M. A., Yazdanpanah, M. J. & Nili-Ahmadabadi, M. Modeling, control and analysis of a curved feet compliant biped with HZD approach. Nonlinear Dynamics vol. 91 459–473 (2017) – 10.1007/s11071-017-3881-7
- Hamed, K. A. & Grizzle, J. W. Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry. IEEE Transactions on Robotics vol. 30 365–381 (2014) – 10.1109/tro.2013.2287831
- Duindam, V. & Stramigioli, S. PORT-BASED CONTROL OF A COMPASS-GAIT BIPEDAL ROBOT. IFAC Proceedings Volumes vol. 38 471–476 (2005) – 10.3182/20050703-6-cz-1902.00733
- Duindam, (2009)
- Pei, Port-controlled hamiltonian optimal control and its application on electric vehicle drives. (2017)
- Rashad, R., Califano, F. & Stramigioli, S. Port-Hamiltonian Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-Hovering. IEEE Robotics and Automation Letters vol. 4 4378–4385 (2019) – 10.1109/lra.2019.2932864
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Fu, B., Li, S., Wang, X. & Guo, L. Output feedback based simultaneous stabilization of two Port-controlled Hamiltonian systems with disturbances. Journal of the Franklin Institute vol. 356 8154–8166 (2019) – 10.1016/j.jfranklin.2019.02.039
- Dai, S. & Koutsoukos, X. Safety analysis of integrated adaptive cruise and lane keeping control using multi-modal port-Hamiltonian systems. Nonlinear Analysis: Hybrid Systems vol. 35 100816 (2020) – 10.1016/j.nahs.2019.100816
- Gritli, H., Khraief, N., Chemori, A. & Belghith, S. Self-generated limit cycle tracking of the underactuated inertia wheel inverted pendulum under IDA-PBC. Nonlinear Dynamics vol. 89 2195–2226 (2017) – 10.1007/s11071-017-3578-y
- Serra, D. et al. Control of Nonprehensile Planar Rolling Manipulation: A Passivity-Based Approach. IEEE Transactions on Robotics vol. 35 317–329 (2019) – 10.1109/tro.2018.2887356
- Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica vol. 97 134–142 (2018) – 10.1016/j.automatica.2018.07.031
- Wang, Z.-M., Wei, A. & Zhang, X. Stability analysis and control design based on average dwell time approaches for switched nonlinear port-controlled Hamiltonian systems. Journal of the Franklin Institute vol. 356 3368–3397 (2019) – 10.1016/j.jfranklin.2019.02.024
- Wang, H., Zhang, H., Wang, Z. & Chen, Q. Finite-time stabilization of periodic orbits for under-actuated biped walking with hybrid zero dynamics. Communications in Nonlinear Science and Numerical Simulation vol. 80 104949 (2020) – 10.1016/j.cnsns.2019.104949
- Hong, Y., Xu, Y. & Huang, J. Finite-time control for robot manipulators. Systems & Control Letters vol. 46 243–253 (2002) – 10.1016/s0167-6911(02)00130-5
- Ren, (2011)
- Song, S. et al. Fractional-order adaptive neuro-fuzzy sliding mode H∞ control for fuzzy singularly perturbed systems. Journal of the Franklin Institute vol. 356 5027–5048 (2019) – 10.1016/j.jfranklin.2019.03.020
- Alinezhad, M. & Allahviranloo, T. On the solution of fuzzy fractional optimal control problems with the Caputo derivative. Information Sciences vol. 421 218–236 (2017) – 10.1016/j.ins.2017.08.094
- Farid, Y., Majd, V. J. & Ehsani-Seresht, A. Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation. Mechanical Systems and Signal Processing vol. 104 465–486 (2018) – 10.1016/j.ymssp.2017.11.010
- Yang, Transient fault diagnosis for traction control system based on optimal fractional-order method. ISA Trans. (2020)
- Liu, J., Li, P., Qi, L., Chen, W. & Qin, K. Distributed formation control of double-integrator fractional-order multi-agent systems with relative damping and nonuniform time-delays. Journal of the Franklin Institute vol. 356 5122–5150 (2019) – 10.1016/j.jfranklin.2019.04.031
- Chen, Disturbance-observer-based robust synchronization control for a class of fractional-order chaotic systems. IEEE Trans. Circuits Syst. II: Express Briefs (2017)
- Wang, Finite-time stabilization of portcontrolled hamiltonian systems with application to nonlinear affine systems. (2008)
- Liu, H., Shen, Y. & Zhao, X. Asynchronous finite-time control for switched linear systems via mode-dependent dynamic state-feedback. Nonlinear Analysis: Hybrid Systems vol. 8 109–120 (2013) – 10.1016/j.nahs.2012.12.001
- Kilbas, (2006)
- Mohammadi, Hybrid nonlinear disturbance observer design for underactuated bipedal robots. (2018)
- Mohammadi, A., Tavakoli, M., Marquez, H. J. & Hashemzadeh, F. Nonlinear disturbance observer design for robotic manipulators. Control Engineering Practice vol. 21 253–267 (2013) – 10.1016/j.conengprac.2012.10.008
- Artstein, Z. Stabilization with relaxed controls. Nonlinear Analysis: Theory, Methods & Applications vol. 7 1163–1173 (1983) – 10.1016/0362-546x(83)90049-4
- Westervelt, (2007)
- Vatankhah, M., Kobravi, H. R. & Ritter, A. Intermittent control model for ascending stair biped robot using a stable limit cycle model. Robotics and Autonomous Systems vol. 121 103255 (2019) – 10.1016/j.robot.2019.103255