Energy-stable port-Hamiltonian systems
Authors
Patrick Buchfink, Silke Glas, Hans Zwart
Abstract
We combine energy-stable and port-Hamiltonian (pH) systems to obtain energy-stable port-Hamiltonian (es-pH) systems. The idea is to extend the known energy-stable systems with an input–output port, which results in a pH formulation. One advantage of the new es-pH formulation is that it naturally preserves its es-pH structure throughout discretization (in space and time) and model reduction.
Keywords
Energy-stable systems; Port-Hamiltonian systems; Structure-preserving discretization; Model reduction
Citation
- Journal: Applied Mathematics Letters
- Year: 2025
- Volume:
- Issue:
- Pages: 109784
- Publisher: Elsevier BV
- DOI: 10.1016/j.aml.2025.109784
BibTeX
@article{Buchfink_2025,
title={{Energy-stable port-Hamiltonian systems}},
ISSN={0893-9659},
DOI={10.1016/j.aml.2025.109784},
journal={Applied Mathematics Letters},
publisher={Elsevier BV},
author={Buchfink, Patrick and Glas, Silke and Zwart, Hans},
year={2025},
pages={109784}
}
References
- Egger, H., Habrich, O. & Shashkov, V. On the Energy Stable Approximation of Hamiltonian and Gradient Systems. Computational Methods in Applied Mathematics 21, 335–349 (2020) – 10.1515/cmam-2020-0025
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Lubich, (2008)
- Bridges, T. J. & Reich, S. Numerical methods for Hamiltonian PDEs. J. Phys. A: Math. Gen. 39, 5287–5320 (2006) – 10.1088/0305-4470/39/19/s02
- Marsden, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics. (1983)
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters 61, 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM J. Sci. Comput. 38, B837–B865 (2016) – 10.1137/15m1055085
- Kinon, (2023)
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- Rettberg, J. et al. Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar. Mathematical and Computer Modelling of Dynamical Systems 29, 116–148 (2023) – 10.1080/13873954.2023.2173238
- Giesselmann, (2024)
- Altmann, R. & Schulze, P. A novel energy-based modeling framework. Math. Control Signals Syst. 37, 395–414 (2025) – 10.1007/s00498-024-00405-5
- Altmann, (2025)