Dirac structures and variational formulation of port-Dirac systems in nonequilibrium thermodynamics
Authors
François Gay-Balmaz, Hiroaki Yoshimura
Abstract
The notion of implicit port-Lagrangian systems for nonholonomic mechanics was proposed in Yoshimura & Marsden (2006a, J. Geom. Phys., 57, 133–156; 2006b, J. Geom. Phys., 57, 209–250; 2006c, Proc. of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto) as a Lagrangian analogue of implicit port-Hamiltonian systems. Such port-systems have an interconnection structure with ports through which power is exchanged with the exterior and which can be modeled by Dirac structures. In this paper, we present the notions of implicit port-Lagrangian systems and port-Dirac dynamical systems in nonequilibrium thermodynamics by generalizing the Dirac formulation to the case allowing irreversible processes, both for closed and open systems. Port-Dirac systems in nonequilibrium thermodynamics can be also deduced from a variational formulation of nonequilibrium thermodynamics for closed and open systems introduced in Gay-Balmaz & Yoshimura (2017a, J. Geom. Phys., 111, 169–193; 2018a, Entropy, 163, 1–26). This is a type of Lagrange–d’Alembert principle for the specific class of nonholonomic systems with nonlinear constraints of thermodynamic type, which are associated to the entropy production equation of the system. We illustrate our theory with some examples such as a cylinder-piston with ideal gas, an electric circuit with entropy production due to a resistor and an open piston with heat and matter exchange with the exterior.
Citation
- Journal: IMA Journal of Mathematical Control and Information
- Year: 2020
- Volume: 37
- Issue: 4
- Pages: 1298–1347
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imamci/dnaa015
BibTeX
@article{Gay_Balmaz_2020,
title={{Dirac structures and variational formulation of port-Dirac systems in nonequilibrium thermodynamics}},
volume={37},
ISSN={1471-6887},
DOI={10.1093/imamci/dnaa015},
number={4},
journal={IMA Journal of Mathematical Control and Information},
publisher={Oxford University Press (OUP)},
author={Gay-Balmaz, François and Yoshimura, Hiroaki},
year={2020},
pages={1298--1347}
}
References
- Abraham, Foundations of Mechanics, 2nd edn. (1978)
- Barbero Liñán, M. et al. Morse families and Dirac systems. Journal of Geometric Mechanics vol. 11 487–510 (2019) – 10.3934/jgm.2019024
- Belevitch, Classical Network Theory (1968)
- Bloch, A. M. Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics (Springer New York, 2003). doi:10.1007/b97376 – 10.1007/b97376
- Bloch, Representations of Dirac structures on vector spaces and nonlinear L–C circuits. Differential Geometry and Control (Boulder, CO, 1997) (1997)
- Brayton, Reciprocal Networks I & II, Electrical Network Analysis. SIAM-AMS Proceedings Quart. Appl. Math. (1964)
- Brayton, Nonlinear reciprocal networks. Mathematical Aspects of Electrical Network Analysis (1971)
- Cendra, H., Ibort, A., de León, M. & Martı́n de Diego, D. A generalization of Chetaev’s principle for a class of higher order nonholonomic constraints. Journal of Mathematical Physics vol. 45 2785–2801 (2004) – 10.1063/1.1763245
- Chua, Linear and Nonlinear Circuits (1987)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Courant, Beyond Poisson structures. Actions Hamiltoniennes de Groupes. Troisième Théorème de Lie (Lyon, 1986) (1988)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- de Groot, Nonequilibrium Thermodynamics (1969)
- Eberard, Port contact systems for irreversible thermodynamical systems. Proceedings of the 44th IEEE Conference on Decision and Control (2007)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems. Journal of Geometry and Physics vol. 111 169–193 (2017) – 10.1016/j.geomphys.2016.08.018
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: Continuum systems. Journal of Geometry and Physics vol. 111 194–212 (2017) – 10.1016/j.geomphys.2016.08.019
- Gay-Balmaz, A variational formulation of nonequilibrium thermodynamics for discrete open systems with mass and heat transfer. Entropy (2018)
- Gay-Balmaz, F. & Yoshimura, H. Dirac structures in nonequilibrium thermodynamics. Journal of Mathematical Physics vol. 59 (2018) – 10.1063/1.5017223
- Gay-Balmaz, Dirac structures in nonequilibrium thermodynamics for simple open systems. J. Math. Phys., (2019)
- Gay-Balmaz, From Lagrangian mechanics to nonequilibrium thermodynamics: a variational perspective. Entropy (2019)
- Gibbs, Graphical methods in the thermodynamics of fluids. Trans. Connecticus Acad. (1873)
- Gotay, Momentum maps and classical relativistic fields. Part I: covariant field theory (1997)
- A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences vol. 432 171–194 (1991) – 10.1098/rspa.1991.0012
- Hermann, Geometry, Physics and Systems (1973)
- O. Jacobs, H. & Yoshimura, H. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics vol. 6 67–98 (2014) – 10.3934/jgm.2014.6.67
- Klein, S. & Nellis, G. Thermodynamics. (2011) doi:10.1017/cbo9780511994883 – 10.1017/cbo9780511994883
- Kondepudi, Modern Thermodynamics (1998)
- Kron, Tensor Analysis of Networks (1939)
- Kron, Diakoptics: The Piecewise Solution of Large-Scale Systems (1963)
- Lavenda, B. H. Thermodynamics of Irreversible Processes. (Macmillan Education UK, 1978). doi:10.1007/978-1-349-03254-9 – 10.1007/978-1-349-03254-9
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1999). doi:10.1007/978-0-387-21792-5 – 10.1007/978-0-387-21792-5
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Oster, G. F., Perelson, A. S. & Katchalsky, A. Network thermodynamics: dynamic modelling of biophysical systems. Quarterly Reviews of Biophysics vol. 6 1–134 (1973) – 10.1017/s0033583500000081
- Oster, G. F. & Perelson, A. S. Chemical reaction dynamics. Archive for Rational Mechanics and Analysis vol. 55 230–274 (1974) – 10.1007/bf00281751
- Perelson, A. S. & Oster, G. F. Chemical reaction dynamics part II: Reaction networks. Archive for Rational Mechanics and Analysis vol. 57 31–98 (1974) – 10.1007/bf00287096
- Sandler, Chemical, Biochemical, and Engineering Thermodynamics (2006)
- Sommerfeld, Mechanics, vol. 1, 1st edn. Lectures on Theoretical Physics (1964)
- Stueckelberg, Thermocinétique Phénoménologique Galiléenne (1974)
- Tellegen, The gyrator, a new electric network element. Philips Res. Rep. (1948)
- Tulczyjew, The Legendre transformation. Ann. Inst. H. Poincaré (1977)
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics vol. 57 133–156 (2006) – 10.1016/j.geomphys.2006.02.009
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part II: Variational structures. Journal of Geometry and Physics vol. 57 209–250 (2006) – 10.1016/j.geomphys.2006.02.012
- Yoshimura, Dirac structures and implicit Lagrangian systems in electric networks. Proc. of the 17th International Symposium on Mathematical Theory of Networks and Systems (2006)
- Yoshimura, Representations of Dirac structures and implicit port-controlled Lagrangian systems. Proc. Int. Symp. Mathematical Theory of Networks and Systems (2008)
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Übertrag. (1995)
- Wyatt, J. L. & Chua, L. O. A theory of nonenergic N‐ports. International Journal of Circuit Theory and Applications vol. 5 181–208 (1977) – 10.1002/cta.4490050210