Cooperative control of NN super twisting sliding mode and EPH methods for uncertain nonlinear systems
Authors
Aiyun Zhu, Haisheng Yu, Xunkai Gao
Abstract
A cooperative control strategy is proposed based on radial basis function neural network (NN) super twisting sliding mode and error port-controlled Hamiltonian (EPH) methods to enhance dynamic performance and steady state performance of the system. First, a NN super twisting sliding mode control method is developed for system with unknown external disturbances and uncertain parameters, where NN is adopted to approximate unknown control gain, the disturbance observer (DOB) is employed to estimate the unknown lumped disturbance. The dynamic performance of the control system is enhanced. Second, the EPH control method based on DOB is developed to increase the accuracy of the control system. Lastly, NN super twisting sliding mode and EPH methods-based cooperative control strategy is developed, the superiority of the proposed method is verified through the simulation and experiments.
Keywords
cooperative control, error port-controlled hamiltonian, sliding mode control, super twisting
Citation
- Journal: Journal of the Franklin Institute
- Year: 2024
- Volume: 361
- Issue: 3
- Pages: 1186–1210
- Publisher: Elsevier BV
- DOI: 10.1016/j.jfranklin.2023.12.049
BibTeX
@article{Zhu_2024,
title={{Cooperative control of NN super twisting sliding mode and EPH methods for uncertain nonlinear systems}},
volume={361},
ISSN={0016-0032},
DOI={10.1016/j.jfranklin.2023.12.049},
number={3},
journal={Journal of the Franklin Institute},
publisher={Elsevier BV},
author={Zhu, Aiyun and Yu, Haisheng and Gao, Xunkai},
year={2024},
pages={1186--1210}
}References
- Başçi, A. & Derdiyok, A. Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measurement 91, 12–18 (2016) – 10.1016/j.measurement.2016.05.026
- Shen, L., Wang, H. & Yue, H. Prescribed Performance Adaptive Fuzzy Control for Affine Nonlinear Systems With State Constraints. IEEE Trans. Fuzzy Syst. 30, 5351–5360 (2022) – 10.1109/tfuzz.2022.3175606
- Su, C.-Y., Leung, T.-P. & Stepanenko, Y. Real-time implementation of regressor-based sliding mode control algorithm for robotic manipulators. IEEE Trans. Ind. Electron. 40, 71–79 (1993) – 10.1109/41.184823
- Kuang-Yow Lian & Chia-Ru Lin. Sliding-mode motion/force control of constrained robots. IEEE Trans. Automat. Contr. 43, 1101–1103 (1998) – 10.1109/9.704980
- Mu, C. & He, H. Dynamic Behavior of Terminal Sliding Mode Control. IEEE Trans. Ind. Electron. 65, 3480–3490 (2018) – 10.1109/tie.2017.2764842
- Limon, D., Alvarado, I., Alamo, T. & Camacho, E. F. Robust tube-based MPC for tracking of constrained linear systems with additive disturbances. Journal of Process Control 20, 248–260 (2010) – 10.1016/j.jprocont.2009.11.007
- Gouta, H., Hadj Said, S. & M’sahli, F. Model-based Predictive and Backstepping controllers for a state coupled four-tank system with bounded control inputs: A comparative study. Journal of the Franklin Institute 352, 4864–4889 (2015) – 10.1016/j.jfranklin.2015.08.004
- Chen, W.-H., Yang, J., Guo, L. & Li, S. Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Trans. Ind. Electron. 63, 1083–1095 (2016) – 10.1109/tie.2015.2478397
- Sariyildiz, E., Oboe, R. & Ohnishi, K. Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview. IEEE Trans. Ind. Electron. 67, 2042–2053 (2020) – 10.1109/tie.2019.2903752
- Meng, X. et al. Disturbance Observer-Based Feedback Linearization Control for a Quadruple-Tank Liquid Level System. ISA Transactions 122, 146–162 (2022) – 10.1016/j.isatra.2021.04.021
- He, Nonsingular terminal sliding-mode control of second-order systems subject to hybrid disturbances. IEEE Trans. Circuits Syst. II (2022)
- Hong, M., Gu, X., Liu, L. & Guo, Y. Finite time extended state observer based nonsingular fast terminal sliding mode control of flexible-joint manipulators with unknown disturbance. Journal of the Franklin Institute 360, 18–37 (2023) – 10.1016/j.jfranklin.2022.10.028
- Chen, Y. et al. Adaptive Sliding-Mode Disturbance Observer-Based Finite-Time Control for Unmanned Aerial Manipulator With Prescribed Performance. IEEE Trans. Cybern. 53, 3263–3276 (2023) – 10.1109/tcyb.2022.3168030
- Van, M. & Ge, S. S. Adaptive Fuzzy Integral Sliding-Mode Control for Robust Fault-Tolerant Control of Robot Manipulators With Disturbance Observer. IEEE Trans. Fuzzy Syst. 29, 1284–1296 (2021) – 10.1109/tfuzz.2020.2973955
- Liu, C., Wen, G., Zhao, Z. & Sedaghati, R. Neural-Network-Based Sliding-Mode Control of an Uncertain Robot Using Dynamic Model Approximated Switching Gain. IEEE Trans. Cybern. 51, 2339–2346 (2021) – 10.1109/tcyb.2020.2978003
- Qian, Finite-time neural network-based hierarchical sliding mode antiswing control for underactuated dual ship-mounted cranes with unmatched sea wave disturbances suppression. IEEE Trans. Neural Netw. Learn. Syst. (2023)
- Hu, J., Zhang, D., Wu, Z.-G. & Li, H. Neural network-based adaptive second-order sliding mode control for uncertain manipulator systems with input saturation. ISA Transactions 136, 126–138 (2023) – 10.1016/j.isatra.2022.11.024
- Papageorgiou, D. & Edwards, C. On the behaviour of under-tuned super-twisting sliding mode control loops. Automatica 135, 109983 (2022) – 10.1016/j.automatica.2021.109983
- Fei, J. & Feng, Z. Fractional-Order Finite-Time Super-Twisting Sliding Mode Control of Micro Gyroscope Based on Double-Loop Fuzzy Neural Network. IEEE Trans. Syst. Man Cybern, Syst. 51, 7692–7706 (2021) – 10.1109/tsmc.2020.2979979
- Hou, Q., Ding, S. & Yu, X. Composite Super-Twisting Sliding Mode Control Design for PMSM Speed Regulation Problem Based on a Novel Disturbance Observer. IEEE Trans. Energy Convers. 36, 2591–2599 (2021) – 10.1109/tec.2020.2985054
- Lin, X. et al. Adaptive generalized super twisting sliding mode control for PMSMs with filtered high-gain observer. ISA Transactions 138, 639–649 (2023) – 10.1016/j.isatra.2023.02.008
- Shen, G., Xia, Y., Zhang, J. & Cui, B. Adaptive super-twisting sliding mode altitude trajectory tracking control for reentry vehicle. ISA Transactions 132, 329–337 (2023) – 10.1016/j.isatra.2022.06.023
- El-Sousy, F. F. M., Amin, M. M. & Mohammed, O. A. Robust Adaptive Neural Network Tracking Control With Optimized Super-Twisting Sliding-Mode Technique for Induction Motor Drive System. IEEE Trans. on Ind. Applicat. 58, 4134–4157 (2022) – 10.1109/tia.2022.3160136
- Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn 72, 49–59 (2012) – 10.1007/s11071-012-0689-3
- Yaghmaei, On contractive port-Hamiltonian systems with state-modulated interconnection and damping matrices. IEEE Trans. Automat. Control (2023)
- Toledo, J., Wu, Y., Ramírez, H. & Le Gorrec, Y. Observer-based boundary control of distributed port-Hamiltonian systems. Automatica 120, 109130 (2020) – 10.1016/j.automatica.2020.109130
- Borja, P., Ortega, R. & Scherpen, J. M. A. New Results on Stabilization of Port-Hamiltonian Systems via PID Passivity-Based Control. IEEE Trans. Automat. Contr. 66, 625–636 (2021) – 10.1109/tac.2020.2986731
- Liu, Fixed-time control for a class of nonlinear PH-DAE systems. IEEE Trans. Syst. Man Cybern. (2023)
- Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica 97, 134–142 (2018) – 10.1016/j.automatica.2018.07.031
- Kölsch, L., Jané Soneira, P., Strehle, F. & Hohmann, S. Optimal control of port-Hamiltonian systems: A continuous-time learning approach. Automatica 130, 109725 (2021) – 10.1016/j.automatica.2021.109725
- Yu, H., Yu, J., Wu, H. & Li, H. Energy-shaping and integral control of the three-tank liquid level system. Nonlinear Dyn 73, 2149–2156 (2013) – 10.1007/s11071-013-0930-8
- Meng, X., Yu, H., Zhang, J. & Yan, K. Optimized control strategy based on EPCH and DBMP algorithms for quadruple-tank liquid level system. Journal of Process Control 110, 121–132 (2022) – 10.1016/j.jprocont.2021.12.008
- Meng, X., Yu, H., Zhang, J. & Yang, Q. Adaptive EPCH strategy for nonlinear systems with parameters uncertainty and disturbances. Nonlinear Dyn 111, 7511–7524 (2023) – 10.1007/s11071-023-08243-x
- Lv, C., Yu, H., Chen, J., Zhao, N. & Chi, J. Trajectory tracking control for unmanned surface vessel with input saturation and disturbances via robust state error IDA-PBC approach. Journal of the Franklin Institute 359, 1899–1924 (2022) – 10.1016/j.jfranklin.2022.01.036
- Fu, B., Li, S., Wang, X. & Guo, L. Output feedback based simultaneous stabilization of two Port-controlled Hamiltonian systems with disturbances. Journal of the Franklin Institute 356, 8154–8166 (2019) – 10.1016/j.jfranklin.2019.02.039
- Zhang, C. & Yu, S. Disturbance observer-based prescribed performance super-twisting sliding mode control for autonomous surface vessels. ISA Transactions 135, 13–22 (2023) – 10.1016/j.isatra.2022.09.025
- Li, H., Bai, L., Wang, L., Zhou, Q. & Wang, H. Adaptive Neural Control of Uncertain Nonstrict-Feedback Stochastic Nonlinear Systems with Output Constraint and Unknown Dead Zone. IEEE Trans. Syst. Man Cybern, Syst. 47, 2048–2059 (2017) – 10.1109/tsmc.2016.2605706