Optimized control strategy based on EPCH and DBMP algorithms for quadruple-tank liquid level system
Authors
Xiangxiang Meng, Haisheng Yu, Jie Zhang, Kejia Yan
Abstract
According to the actual production requirements in process control, this paper proposes an optimized control strategy for the quadruple-tank liquid level system (QTLLS). Firstly, using the Bernoulli’s law and mass conservation principle, the dynamic mathematical model of QTLLS is established and linearized. Secondly, the state error port controlled Hamiltonian (EPCH) controller is designed by Hamiltonian system model construction which utilize the Hamiltonian principle, and a disturbance observer(DOB) is chosen to compensate disturbances impact. Thirdly, a deadbeat model predictive (DBMP) control algorithm with discrete-time disturbance observer (DTDOB) is proposed. Finally, in order to establish an optimized control strategy, an optimized function is proposed, which can give full play to the advantages of DBMP-OB algorithm with fast dynamic response and EPCH-OB algorithm with good steady-state performance. A wealth of results from simulation and experimental fully confirm the superiority of the proposed control strategies compare with proportional–integral–derivative (PID) control and sliding mode control (SMC). Moreover, the proposed optimized control strategy has been realized position control, tracking control and disturbance compensation control in this paper. It meets the needs of production and has great industrial application prospects.
Keywords
dbmp control, optimized function, qtlls, state epch control
Citation
- Journal: Journal of Process Control
- Year: 2022
- Volume: 110
- Issue:
- Pages: 121–132
- Publisher: Elsevier BV
- DOI: 10.1016/j.jprocont.2021.12.008
BibTeX
@article{Meng_2022,
title={{Optimized control strategy based on EPCH and DBMP algorithms for quadruple-tank liquid level system}},
volume={110},
ISSN={0959-1524},
DOI={10.1016/j.jprocont.2021.12.008},
journal={Journal of Process Control},
publisher={Elsevier BV},
author={Meng, Xiangxiang and Yu, Haisheng and Zhang, Jie and Yan, Kejia},
year={2022},
pages={121--132}
}References
- Gatzke, E. P., Meadows, E. S., Wang, C. & Doyle, F. J., III. Model based control of a four-tank system. Computers & Chemical Engineering 24, 1503–1509 (2000) – 10.1016/s0098-1354(00)00555-x
- Ray, P. P. & Thapa, N. A systematic review on real-time automated measurement of IV fluid level: Status and challenges. Measurement 129, 343–348 (2018) – 10.1016/j.measurement.2018.07.046
- Yu, T., Zhao, J., Xu, Z., Chen, X. & Biegler, L. T. Sensitivity-based hierarchical distributed model predictive control of nonlinear processes. Journal of Process Control 84, 146–167 (2019) – 10.1016/j.jprocont.2019.10.003
- Kirubakaran, V., Radhakrishnan, T. K. & Sivakumaran, N. Distributed multiparametric model predictive control design for a quadruple tank process. Measurement 47, 841–854 (2014) – 10.1016/j.measurement.2013.10.011
- Thamallah, A., Sakly, A. & M’Sahli, F. A new constrained PSO for fuzzy predictive control of Quadruple-Tank process. Measurement 136, 93–104 (2019) – 10.1016/j.measurement.2018.12.050
- Başçi, A. & Derdiyok, A. Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measurement 91, 12–18 (2016) – 10.1016/j.measurement.2016.05.026
- Meng, Disturbance observer-based integral backstepping control for a two-tank liquid level system subject to external disturbances. Math. Probl. Eng. (2020)
- Shah, D. H. & Patel, D. M. Design of sliding mode control for quadruple-tank MIMO process with time delay compensation. Journal of Process Control 76, 46–61 (2019) – 10.1016/j.jprocont.2019.01.006
- Hong, X. et al. Liquid level detection in porcelain bushing type terminals using piezoelectric transducers based on auto-encoder networks. Measurement 141, 12–23 (2019) – 10.1016/j.measurement.2019.04.014
- Paul, R. & Sengupta, A. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system. ISA Transactions 71, 585–598 (2017) – 10.1016/j.isatra.2017.07.030
- Ramanathan, P., Mangla, K. K. & Satpathy, S. Smart controller for conical tank system using reinforcement learning algorithm. Measurement 116, 422–428 (2018) – 10.1016/j.measurement.2017.11.007
- Ren, A novel fault diagnosis method based on improved negative selection algorithm. IEEE Trans. Instrum. Meas. (2021)
- Safaeipour, H., Forouzanfar, M. & Ramezani, A. Incipient fault detection in nonlinear non-Gaussian noisy environment. Measurement 174, 109008 (2021) – 10.1016/j.measurement.2021.109008
- Huang, C., Canuto, E. & Novara, C. The four-tank control problem: Comparison of two disturbance rejection control solutions. ISA Transactions 71, 252–271 (2017) – 10.1016/j.isatra.2017.07.020
- Meng, X., Yu, H., Xu, T. & Wu, H. Disturbance Observer and L2-Gain-Based State Error Feedback Linearization Control for the Quadruple-Tank Liquid-Level System. Energies 13, 5500 (2020) – 10.3390/en13205500
- Meng, Disturbance observer-based feedback linearization control for a quadruple-tank liquid level system. ISA Trans. (2021)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control 19, 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Ortega, Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. (2011)
- Califano, F., Bin, M., Macchelli, A. & Melchiorri, C. Stability Analysis of Nonlinear Repetitive Control Schemes. IEEE Control Syst. Lett. 2, 773–778 (2018) – 10.1109/lcsys.2018.2849617
- Zucco, Observer-based boundary control of distributed port-Hamiltonian systems. Automatica (2020)
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Stabilization of Discrete Port-Hamiltonian Dynamics via Interconnection and Damping Assignment. IEEE Control Syst. Lett. 5, 103–108 (2021) – 10.1109/lcsys.2020.3000705
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control 19, 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn 72, 49–59 (2012) – 10.1007/s11071-012-0689-3
- Benner, P., Goyal, P. & Van Dooren, P. Identification of port-Hamiltonian systems from frequency response data. Systems & Control Letters 143, 104741 (2020) – 10.1016/j.sysconle.2020.104741
- Fu, Global output regulation for a class of single input port-controlled Hamiltonian disturbed systems. Appl. Math. Comput. (2018)
- Yu, H., Yu, J., Wu, H. & Li, H. Energy-shaping and integral control of the three-tank liquid level system. Nonlinear Dyn 73, 2149–2156 (2013) – 10.1007/s11071-013-0930-8
- Nguyen, T. S., Hoang, N. H., Hussain, M. A. & Tan, C. K. Tracking-error control via the relaxing port-Hamiltonian formulation: Application to level control and batch polymerization reactor. Journal of Process Control 80, 152–166 (2019) – 10.1016/j.jprocont.2019.05.014
- Sou, W.-K. et al. A Deadbeat Current Controller of LC-Hybrid Active Power Filter for Power Quality Improvement. IEEE J. Emerg. Sel. Topics Power Electron. 8, 3891–3905 (2020) – 10.1109/jestpe.2019.2936397
- Jiang, W. et al. An Improved Deadbeat Control for a Three-Phase Three-Line Active Power Filter With Current-Tracking Error Compensation. IEEE Trans. Power Electron. 33, 2061–2072 (2018) – 10.1109/tpel.2017.2693325
- Wang, P., Bi, Y., Gao, F., Song, T. & Zhang, Y. An Improved Deadbeat Control Method for Single-Phase PWM Rectifiers in Charging System for EVs. IEEE Trans. Veh. Technol. 68, 9672–9681 (2019) – 10.1109/tvt.2019.2937653
- Wang, B., Zhang, X., Ye, J. & Gooi, H. B. Deadbeat Control for a Single-Inductor Multiple-Input Multiple-Output DC–DC Converter. IEEE Trans. Power Electron. 34, 1914–1924 (2019) – 10.1109/tpel.2018.2832243
- Wang, B. et al. Bidirectional Three-Level Cascaded Converter With Deadbeat Control for HESS in Solar-Assisted Electric Vehicles. IEEE Trans. Transp. Electrific. 5, 1190–1201 (2019) – 10.1109/tte.2019.2939927
- Wei, S., Zhao, Z., Li, K., Yuan, L. & Wen, W. Deadbeat Current Controller for Bidirectional Dual-Active-Bridge Converter Using an Enhanced SPS Modulation Method. IEEE Trans. Power Electron. 36, 1274–1279 (2021) – 10.1109/tpel.2020.3007706
- Wang, J., Tang, Y., Lin, P., Liu, X. & Pou, J. Deadbeat Predictive Current Control for Modular Multilevel Converters With Enhanced Steady-State Performance and Stability. IEEE Trans. Power Electron. 35, 6878–6894 (2020) – 10.1109/tpel.2019.2955485
- He, L., Wang, F., Wang, J. & Rodriguez, J. Zynq Implemented Luenberger Disturbance Observer Based Predictive Control Scheme for PMSM Drives. IEEE Trans. Power Electron. 35, 1770–1778 (2020) – 10.1109/tpel.2019.2920439
- Kang, S., Soh, J., Kim, R., Lee, K. & Kim, S. Robust predictive current control for IPMSM without rotor flux information based on a discrete‐time disturbance observer. IET Electric Power Appl 13, 2079–2089 (2019) – 10.1049/iet-epa.2019.0252
- Wang, B., Manandhar, U., Zhang, X., Gooi, H. B. & Ukil, A. Deadbeat Control for Hybrid Energy Storage Systems in DC Microgrids. IEEE Trans. Sustain. Energy 10, 1867–1877 (2019) – 10.1109/tste.2018.2873801
- Zhang, Disturbance-deadbeat inductance observer-based current predictive control for surface-mounted permanent magnet synchronous motors drives. IET Power Electr. (2020)
- Kim, Equivalent input disturbance observer-based ripple-free deadbeat control for voltage regulation of a DC-DC buck converter. IET Power Electron. (2019)
- Yang, H. et al. Robust Deadbeat Predictive Power Control With a Discrete-Time Disturbance Observer for PWM Rectifiers Under Unbalanced Grid Conditions. IEEE Trans. Power Electron. 34, 287–300 (2019) – 10.1109/tpel.2018.2816742
- Kakosimos, P. & Abu-Rub, H. Deadbeat Predictive Control for PMSM Drives With 3-L NPC Inverter Accounting for Saturation Effects. IEEE J. Emerg. Sel. Topics Power Electron. 6, 1671–1680 (2018) – 10.1109/jestpe.2018.2796123
- Chi, J. Hybrid control of 2-DOF joint robot based on Port-Controlled Hamiltonian and PD algorithm. Cluster Comput 22, 7983–7989 (2017) – 10.1007/s10586-017-1546-4
- Yue, Trajectory tracking of flexible-joint robots actuated by PMSM via a novel smooth switching control strategy. Appl. Sci. (2019)
- Meng, X., Yu, H., Zhang, J., Xu, T. & Wu, H. Liquid Level Control of Four-Tank System Based on Active Disturbance Rejection Technology. Measurement 175, 109146 (2021) – 10.1016/j.measurement.2021.109146
- Lv, Robust state-error port-controlled Hamiltonian trajectory tracking control for unmanned surface vehicle with disturbance uncertainties. Asian J. Control (2020)
- Nie, Y., Ludois, D. C. & Brown, I. P. Deadbeat-Direct Torque and Flux Control of Wound Field Synchronous Machine at Low Sampling to Fundamental Frequency Ratios. IEEE Trans. on Ind. Applicat. 55, 3813–3822 (2019) – 10.1109/tia.2019.2914681
- Du, H., Chen, X., Wen, G., Yu, X. & Lu, J. Discrete-Time Fast Terminal Sliding Mode Control for Permanent Magnet Linear Motor. IEEE Trans. Ind. Electron. 65, 9916–9927 (2018) – 10.1109/tie.2018.2815942
- Rovere, L., Formentini, A. & Zanchetta, P. FPGA Implementation of a Novel Oversampling Deadbeat Controller for PMSM Drives. IEEE Trans. Ind. Electron. 66, 3731–3741 (2019) – 10.1109/tie.2018.2851994
- Hosoyamada, Y., Fujimoto, Y., Kawamura, A. & Yuzurihara, I. Individual Deadbeat Control for Three-Phase Interleaved Buck DC/DC Converters. IEEE Trans. on Ind. Applicat. 56, 5065–5074 (2020) – 10.1109/tia.2020.2998672
- Wang, Predictive deviation filter for deadbeat control. IET Electr. Power Appl. (2020)