Characterisation for exponential stability of port-Hamiltonian systems
Authors
Sascha Trostorff, Marcus Waurick
Abstract
Given an energy-dissipating port-Hamiltonian system, we characterise the exponential decay of the energy via the model ingredients under mild conditions on the Hamiltonian density \( \)\mathcal{H}\( \) . In passing, we obtain generalisations for sufficient criteria in the literature by making regularity requirements for the Hamiltonian density largely obsolete. The key assumption for the characterisation (and thus the sufficient criteria) to work is a uniform bound for a family of fundamental solutions for some non-autonomous, finite-dimensional ODEs. Regularity conditions on \( \)\mathcal{H}\( \) for previously known criteria such as bounded variation are shown to imply the key assumption. Exponentially stable port-Hamiltonian systems with densities in L _∞ only are also provided.
Citation
- Journal: Israel Journal of Mathematics
- Year: 2025
- Volume:
- Issue:
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s11856-025-2831-1
BibTeX
@article{Trostorff_2025,
title={{Characterisation for exponential stability of port-Hamiltonian systems}},
ISSN={1565-8511},
DOI={10.1007/s11856-025-2831-1},
journal={Israel Journal of Mathematics},
publisher={Springer Science and Business Media LLC},
author={Trostorff, Sascha and Waurick, Marcus},
year={2025}
}References
- Arendt W, Batty CJK (1988) Tauberian theorems and stability of one-parameter semigroups. Trans Amer Math Soc 306(2):837–852. https://doi.org/10.1090/s0002-9947-1988-0933321- – 10.1090/s0002-9947-1988-0933321-3
- B Augner, Stabilisation of Infinite-Dimensional Port-Hamiltonian Systems via Dissipative Boundary Feedback (2016)
- Augner B (2019) Well-Posedness and Stability of Infinite-Dimensional Linear Port-Hamiltonian Systems with Nonlinear Boundary Feedback. SIAM J Control Optim 57(3):1818–1844. https://doi.org/10.1137/15m102490 – 10.1137/15m1024901
- Batty CJK, Duyckaerts T (2008) Non-uniform stability for bounded semi-groups on Banach spaces. J evol equ 8(4):765–780. https://doi.org/10.1007/s00028-008-0424- – 10.1007/s00028-008-0424-1
- R L Devaney, An Introduction to Chaotic Dynamical Systems (1989)
- Engel K-J (2013) Generator property and stability for generalized difference operators. J Evol Equ 13(2):311–334. https://doi.org/10.1007/s00028-013-0179- – 10.1007/s00028-013-0179-1
- K-J Engel, One-Parameter Semigroups for Linear Evolution Equations (2000)
- Jacob B, Morris K, Zwart H (2015) C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. J Evol Equ 15(2):493–502. https://doi.org/10.1007/s00028-014-0271- – 10.1007/s00028-014-0271-1
- Jacob B, Zwart HJ (2012) Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces. Springer Base – 10.1007/978-3-0348-0399-1
- Jacob B, Zwart H (2018) An operator theoretic approach to infinite‐dimensional control systems. GAMM-Mitteilungen 41(4). https://doi.org/10.1002/gamm.20180001 – 10.1002/gamm.201800010
- Leoni G (2009) A First Course in Sobolev Spaces. Graduate Studies in Mathematic – 10.1090/gsm/105
- Pazy A (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer New Yor – 10.1007/978-1-4612-5561-1
- Picard RH, Trostorff S, Watson B, Waurick M (2023) A Structural Observation on Port-Hamiltonian Systems. SIAM J Control Optim 61(2):511–535. https://doi.org/10.1137/21m144136 – 10.1137/21m1441365
- J Prüss, Transactions of the American Mathematical Society (1984)
- Ramirez H, Le Gorrec Y, Macchelli A, Zwart H (2014) Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans Automat Contr 59(10):2849–2855. https://doi.org/10.1109/tac.2014.231575 – 10.1109/tac.2014.2315754
- Ramirez H, Zwart H, Le Gorrec Y (2017) Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica 85:61–69. https://doi.org/10.1016/j.automatica.2017.07.04 – 10.1016/j.automatica.2017.07.045
- Schmid J (2022) Stabilization of port-Hamiltonian systems with discontinuous energy densities. EECT 11(5):1775. https://doi.org/10.3934/eect.202106 – 10.3934/eect.2021063
- C Seifert, Measure-perturbed one-dimensional Schrödinger operators (2012)
- N Skrepek, Linear port-Hamiltonian Systems on Multidimensional Spatial Domains (2021)
- A van der Schaft, Proceedings of the International Congress of Mathematicians. Madrid, 2006. Vol. III (2006)
- van der Schaft A, Jeltsema D (2014) Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1(2):173–378. https://doi.org/10.1561/260000000 – 10.1561/2600000002
- Villegas JA, Zwart H, Le Gorrec Y, Maschke B (2009) Exponential Stability of a Class of Boundary Control Systems. IEEE Trans Automat Contr 54(1):142–147. https://doi.org/10.1109/tac.2008.200717 – 10.1109/tac.2008.2007176
- Waurick M, Wegner S-A (2020) Dissipative extensions and port-Hamiltonian operators on networks. Journal of Differential Equations 269(9):6830–6874. https://doi.org/10.1016/j.jde.2020.05.01 – 10.1016/j.jde.2020.05.014
- Waurick M, Zwart H (2024) Asymptotic Stability of Port-Hamiltonian Systems. Trends in Mathematics 91–12 – 10.1007/978-3-031-64991-2_4