Asymptotic Stability of Port-Hamiltonian Systems
Authors
Abstract
We characterise asymptotic stability of port-Hamiltonian systems by means of matrix conditions using well-known resolvent criteria from C 0 \( \)C_0\( \) -semigroup theory. The idea of proof is based on a recent characterisation of exponential stability established in Trostorff and Waurick (Characterisation for Exponential Stability of port-Hamiltonian Systems, 2024), which was inspired by a structural observation concerning port-Hamiltonian systems from Picard et al. (SIAM J Control Optim 61(2):511–535, 2023). We apply the result to study the asymptotic stability of a network of vibrating strings.
Keywords
Port-Hamiltonian systems; Stability; -Semigroup; Infinite-dimensional systems theory
Citation
- ISBN: 9783031649905
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-64991-2_4
- Note: Workshop on Systems Theory and PDEs
BibTeX
@inbook{Waurick_2024,
title={{Asymptotic Stability of Port-Hamiltonian Systems}},
ISBN={9783031649912},
ISSN={2297-024X},
DOI={10.1007/978-3-031-64991-2_4},
booktitle={{Systems Theory and PDEs}},
publisher={Springer Nature Switzerland},
author={Waurick, Marcus and Zwart, Hans},
year={2024},
pages={91--122}
}
References
- Batty, C. J. K. & Duyckaerts, T. Non-uniform stability for bounded semi-groups on Banach spaces. Journal of Evolution Equations vol. 8 765–780 (2008) – 10.1007/s00028-008-0424-1
- R Chill, Trans. R. Soc. A. (2020)
- Curtain, R. F. & Weiss, G. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control and Related Fields vol. 9 643–671 (2019) – 10.3934/mcrf.2019045
- Dáger, R. & Zuazua, E. Wave Progagation, Observation and Control in 1-d Flexible Multi-Structures. Mathématiques et Applications (Springer-Verlag, 2006). doi:10.1007/3-540-37726-3 – 10.1007/3-540-37726-3
- F Gesztesy, The Callias Index Formula Revisited Lecture Notes in Mathematics 2157 (2016)
- Eisner, T., Farkas, B., Haase, M. & Nagel, R. Operator Theoretic Aspects of Ergodic Theory. Graduate Texts in Mathematics (Springer International Publishing, 2015). doi:10.1007/978-3-319-16898-2 – 10.1007/978-3-319-16898-2
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Jacob, B., Morris, K. & Zwart, H. C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. Journal of Evolution Equations vol. 15 493–502 (2015) – 10.1007/s00028-014-0271-1
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Picard, R. H., Trostorff, S., Watson, B. & Waurick, M. A Structural Observation on Port-Hamiltonian Systems. SIAM Journal on Control and Optimization vol. 61 511–535 (2023) – 10.1137/21m1441365
- Seifert, C., Trostorff, S. & Waurick, M. Evolutionary Equations. Operator Theory: Advances and Applications (Springer International Publishing, 2022). doi:10.1007/978-3-030-89397-2 – 10.1007/978-3-030-89397-2
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176