Asymptotic stability for a class of boundary control systems with non-linear damping
Authors
Hans Zwart, Hector Ramirez, Yann Le Gorrec
Abstract
The asymptotic stability of boundary controlled port-Hamiltonian systems defined on a 1D spatial domain interconnected to a class of non-linear boundary damping is addressed. It is shown that if the port-Hamiltonian system is approximately observable, then any boundary damping which behaves linear for small velocities asymptotically stabilizes the system.
Keywords
Boundary control systems; infinite-dimensional port Hamiltonian systems; asymptotic stability; non-linear control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2016
- Volume: 49
- Issue: 8
- Pages: 304–308
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2016.07.458
- Note: 2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2016- Bertinoro, Italy, 13—15 June 2016
BibTeX
@article{Zwart_2016,
title={{Asymptotic stability for a class of boundary control systems with non-linear damping}},
volume={49},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2016.07.458},
number={8},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Zwart, Hans and Ramirez, Hector and Le Gorrec, Yann},
year={2016},
pages={304--308}
}
References
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Curtain, (1995)
- Jacob, (2012)
- Jacob, B., Morris, K. & Zwart, H. C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. Journal of Evolution Equations vol. 15 493–502 (2015) – 10.1007/s00028-014-0271-1
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Oostveen, (2000)
- Pazy, (1983)
- Ramirez, Exponential stabilization of boundary controlled port-Hamiltonian systems with dynamic feedback. Automatic Control, IEEE Transactions on (2014)
- Staffans, (2005)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Villegas, Stability and stabilization of a class of boundary control systems. Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ‘05. 44th IEEE Conference on (2005)
- Villegas, (2007)
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036