A passivity approach in port-Hamiltonian form for formation control and velocity tracking
Authors
Ningbo Li, Jacquelien Scherpen, Arjan Van der Schaft, Zhiyong Sun
Abstract
This paper proposes a passivity approach in port-Hamiltonian (pH) form for multi-agent formation control and velocity tracking. The control law consists of two parts, where the internal feedback is to track the velocity and the external feedback is to achieve formation stabilization. Since the dynamics of the controller are associated with the edges, the stability analysis is related to the kernel of the incidence matrix \( B \) of the underlying graph. For displacement-based formations, the approach is applicable not only to acyclic graphs, but also to cyclic graphs, in which case the columns of \( B \) are not linearly independent. For rigid formations, the passivity approach for distance and bearing formation is proposed. In addition, the relationship between infinitesimal rigidity and convergence of the desired formation is established. The proposed approach is verified by numerical simulations.
Citation
- Journal: 2022 European Control Conference (ECC)
- Year: 2022
- Volume:
- Issue:
- Pages: 1844–1849
- Publisher: IEEE
- DOI: 10.23919/ecc55457.2022.9838171
BibTeX
@inproceedings{Li_2022,
title={{A passivity approach in port-Hamiltonian form for formation control and velocity tracking}},
DOI={10.23919/ecc55457.2022.9838171},
booktitle={{2022 European Control Conference (ECC)}},
publisher={IEEE},
author={Li, Ningbo and Scherpen, Jacquelien and Van der Schaft, Arjan and Sun, Zhiyong},
year={2022},
pages={1844--1849}
}
References
- Hernandez, T., Loria, A., Nuno, E. & Panteley, E. Consensus-based formation control of nonholonomic robots without velocity measurements. 2020 European Control Conference (ECC) 674–679 (2020) doi:10.23919/ecc51009.2020.9143841 – 10.23919/ecc51009.2020.9143841
- garciademarina, Maneuvering and robustness issues in undirected displacement-consensus-based formation control. IEEE Transactions on Automatic Control (0)
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- anderson, Rigid graph control architectures for autonomous formations. IEEE Control Systems Magazine (0)
- Sun, Z. Cooperative Coordination and Formation Control for Multi-Agent Systems. Springer Theses (Springer International Publishing, 2018). doi:10.1007/978-3-319-74265-6 – 10.1007/978-3-319-74265-6
- Hendrickson, B. Conditions for Unique Graph Realizations. SIAM J. Comput. 21, 65–84 (1992) – 10.1137/0221008
- Sun, Z., Mou, S., Anderson, B. D. O. & Cao, M. Exponential stability for formation control systems with generalized controllers: A unified approach. Systems & Control Letters 93, 50–57 (2016) – 10.1016/j.sysconle.2016.02.022
- Eren, T. Formation shape control based on bearing rigidity. International Journal of Control 85, 1361–1379 (2012) – 10.1080/00207179.2012.685183
- Zhao, S. & Zelazo, D. Bearing Rigidity and Almost Global Bearing-Only Formation Stabilization. IEEE Trans. Automat. Contr. 61, 1255–1268 (2016) – 10.1109/tac.2015.2459191
- Jing, G., Zhang, G., Lee, H. W. J. & Wang, L. Angle-based shape determination theory of planar graphs with application to formation stabilization. Automatica 105, 117–129 (2019) – 10.1016/j.automatica.2019.03.026
- Beard, R. W., Lawton, J. & Hadaegh, F. Y. A coordination architecture for spacecraft formation control. IEEE Trans. Contr. Syst. Technol. 9, 777–790 (2001) – 10.1109/87.960341
- ren, Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine (0)
- Arcak, M. Passivity as a Design Tool for Group Coordination. IEEE Trans. Automat. Contr. 52, 1380–1390 (2007) – 10.1109/tac.2007.902733
- Oh, K.-K., Park, M.-C. & Ahn, H.-S. A survey of multi-agent formation control. Automatica 53, 424–440 (2015) – 10.1016/j.automatica.2014.10.022
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM J. Control Optim. 51, 906–937 (2013) – 10.1137/110840091
- khalil, Nonlinear Systems (2002)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- chen, Angle rigidity and its usage to stabilize multi-agent formations in 2D. IEEE Transactions on Automatic Control article in press (0)