Bibliography
Port-Hamiltonian systems is an ever-growing research area as it proposes a powerful framework for the control of multi-physics systems.
The following list of publications presents the main results of ours behind SCRIMP.
Articles
Haine, Ghislain and Matignon, Denis and Serhani, Anass. Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled N-Dimensional Wave Equation As a Port-Hamiltonian System. (2023) International Journal of Numerical Analysis and Modeling, 20 (1). 92-133. DOI:10.4208/ijnam2023-1005
Haine, Ghislain and Matignon, Denis and Monteghetti, Florian. Long-time behavior of a coupled heat-wave system using a structure-preserving finite element method. (2022) Mathematical Reports, 22 (1-2). 187-215. PDF
Mora, Luis A. and Le Gorrec, Yann and Matignon, Denis and Ramirez, Hector and Yuz, Juan I.. On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. (2021) Physics of Fluids, 33 (11). 117117. DOI:10.1063/5.0067784
Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent. A Partitioned Finite Element Method for power-preserving discretization of open systems of conservation laws. (2021) IMA Journal of Mathematical Control and Information, 38 (2). 493-533. DOI:10.1093/imamci/dnaa038
Brugnoli, Andrea and Haine, Ghislain and Serhani, Anass and Vasseur, Xavier. Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control. (2021) Journal of Applied Mathematics and Physics, 09 (06). 1278-1321. DOI:10.4236/jamp.2021.96088
Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Port-Hamiltonian flexible multibody dynamics. (2021) Multibody System Dynamics, 51 (3). 343-375. DOI:10.1007/s11044-020-09758-6
Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. A port-Hamiltonian formulation of linear thermoelasticity and its mixed finite element discretization. (2021) Journal of Thermal Stresses, 44 (6). 643-661. DOI:10.1080/01495739.2021.1917322
Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Pommier-Budinger, Valérie. Port-Hamiltonian model of two-dimensional shallow water equations in moving containers. (2020) IMA Journal of Mathematical Control and Information, 37 (4). 1348-1366. DOI:10.1093/imamci/dnaa016
Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. (2019) Applied Mathematical Modelling, 75. 940-960. DOI:10.1016/j.apm.2019.04.035
Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Port-Hamiltonian formulation and symplectic discretization of plate models. Part II : Kirchhoff model for thin plates. (2019) Applied Mathematical Modelling, 75. 961-981. DOI:10.1016/j.apm.2019.04.036
Aoues, Saïd and Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Alazard, Daniel. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. (2019) IEEE Transactions on Control Systems Technology, 27 (1). 355-362. DOI:10.1109/TCST.2017.2771244
Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Pommier-Budinger, Valérie. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. (2017) Journal of Fluids and Structures, 69. 402-427. DOI:10.1016/j.jfluidstructs.2016.12.007
Book Chapters
Haine, Ghislain and Matignon, Denis. Structure-Preserving Discretization of a Coupled Heat-Wave System, as Interconnected Port-Hamiltonian Systems. (2021) In: Geometric Science of Information. Springer International Publishing AG, 191-199. DOI:10.1007/978-3-030-80209-7_22
Serhani, Anass and Matignon, Denis and Haine, Ghislain. A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. (2019) In: Geometric Science of Information. Springer International Publishing AG, Cham, Suisse, 549-558. DOI:10.1007/978-3-030-26980-7_57
Proceedings
Brugnoli, Andrea and Haine, Ghislain and Matignon, Denis. Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control. (2022) In: 25th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2022), 12 September 2022 - 16 September 2022 (Bayreuth, Germany).
Haine, Ghislain and Matignon, Denis and Monteghetti, Florian. Structure-preserving discretization of Maxwell’s equations as a port-Hamiltonian system. (2022) In: 25th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2022), 12 September 2022 - 16 September 2022 (Bayreuth, Germany).
Haine, Ghislain and Lefèvre, Laurent and Matignon, Denis. PFEM: a mixed structure-preserving discretization method for port-Hamiltonian systems. (2022) In: International Workshop on Operator Theory and its Applications, 6 September 2022 - 10 September 2022 (Cracovie, Poland).
Brugnoli, Andrea and Matignon, Denis. A port-Hamiltonian formulation for the full von-Kármán plate model. (2022) In: 10th European Nonlinear Dynamics Conference (ENOC), 17 July 2022 - 22 July 2022 (Lyon, France).
Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent. A Partitioned Finite Element Method (PFEM) for power-preserving discretization of port-Hamiltonian systems (pHs) with polynomial nonlinearity. (2022) In: European Nonlinear Dynamics Conference (ENOC 2022), 17 July 2022 - 22 July 2022 (Lyon, France).
Hélie, Thomas and Matignon, Denis. Nonlinear damping laws preserving the eigenstructure of the momentum space for conservative linear PDE problems: a port-Hamiltonian modelling. (2022) In: 10th European Nonlinear Dynamics Conference (ENOC), 17 July 2022 - 22 July 2022 (Lyon, France).
Bendimerad-Hohl, Antoine and Haine, Ghislain and Matignon, Denis and Maschke, Bernhard. Structure-preserving discretization of a coupled Allen-Cahn and heat equation system. (2022) In: 4th IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory - TFMST 2022, 25 July 2022 - 27 July 2022 (Montreal, Canada).
Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent. Dissipative Shallow Water Equations: a port-Hamiltonian formulation. (2021) In: Lagrangian and Hamiltonian Methodes for Nonlinear Control (7th LHMNC 2021), 11 October 2021 - 13 October 2021 (Berlin, Germany).
Haine, Ghislain and Matignon, Denis. Incompressible Navier-Stokes Equation as port-Hamiltonian systems: velocity formulation versus vorticity formulation. (2021) In: Lagrangian and Hamiltonian Methodes for Nonlinear Control (7th LHMNC 2021), 11 October 2021 - 13 October 2021 (Berlin, Germany).
Brugnoli, Andrea and Rashad, Ramy and Califano, Federico and Stramigioli, Stefano and Matignon, Denis. Mixed finite elements for port-Hamiltonian models of von Kármán beams. (2021) In: Lagrangian and Hamiltonian Methodes for Nonlinear Control (LHMNLC 2021), 11 October 2021 - 13 October 2021 (Berlin, Germany).
Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Structure-preserving discretization of port-Hamiltonian plate models. (2021) In: Mathematical Theory of Networks and Systems, August 2021 - August 2021 (Cambridge, United Kingdom).
Brugnoli, Andrea and Matignon, Denis and Haine, Ghislain and Serhani, Anass. Numerics for Physics-Based PDEs with Boundary Control: the Partitioned Finite Element Method for Port-Hamiltonian Systems. (2021) In: SIAM Conference on Computational Science and Engineering (CSE21), 1 March 2021 - 5 March 2021 (Virtual conference).
Brugnoli, Andrea and Cardoso-Ribeiro, Flávio Luiz and Haine, Ghislain and Kotyczka, Paul. Partitioned finite element method for structured discretization with mixed boundary conditions. (2020) In: 21th IFAC World Congress, 11 July 2020 - 17 July 2020 (Berlin, Germany).
Mora, Luis A. and Gorrec, Yann Le and Matignon, Denis and Ramirez, Hector and Yuz, Juan I.. About Dissipative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows. (2020) In: The 21st World Congress of The International Federation of Automatic Control (IFAC 2020), 11 July 2020 - 17 July 2020 (Vitual event, Germany).
Payen, Gabriel and Matignon, Denis and Haine, Ghislain. Modelling and structure-preserving discretization of Maxwell’s equations as port-Hamiltonian system. (2020) In: The 21st World Congress of The International Federation of Automatic Control (IFAC 2020), 11 July 2020 - 17 July 2020 (Virtual event, Germany).
Treton, Anne-Sophie and Haine, Ghislain and Matignon, Denis. Modelling the 1D piston problem as interconnected port-Hamiltonian systems. (2020) In: The 21st World Congress of The International Federation of Automatic Control (IFAC 2020), 11 July 2020 - 17 July 2020 (Virtual event, Germany).
Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Interconnection of the Kirchhoff plate within the port-Hamiltonian framework. (2020) In: 2019 IEEE 58th Conference on Decision and Control (CDC), 11 December 2019 - 13 December 2019 (Nice, France).
Cardoso-Ribeiro, Flávio Luiz and Brugnoli, Andrea and Matignon, Denis and Lefèvre, Laurent. Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. (2020) In: 2019 IEEE 58th Conference on Decision and Control (CDC), 11 December 2019 - 13 December 2019 (Nice, France).
Serhani, Anass and Haine, Ghislain and Matignon, Denis. Anisotropic heterogeneous n-D heat equation with boundary control and observation : I. Modeling as port-Hamiltonian system. (2019) In: 3rd IFAC Workshop on Thermodynamic Foundations for a Mathematical Systems Theory (TFMST 2019), 3 July 2019 - 5 July 2019 (Louvain-la-Neuve, Belgium).
Serhani, Anass and Haine, Ghislain and Matignon, Denis. Anisotropic heterogeneous n-D heat equation with boundary control and observation : II. Structure-preserving discretization. (2019) In: 3rd IFAC Workshop on Thermodynamic Foundations for a Mathematical Systems Theory (TFMST 2019), 3 July 2019 - 5 July 2019 (Louvain-la-Neuve, Belgium).
Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Partitioned finite element method for the Mindlin plate as a port-Hamiltonian system. (2019) In: 3nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019, 20 May 2019 - 24 May 2019 (Oaxaca, Mexico). (Unpublished)
Serhani, Anass and Matignon, Denis and Haine, Ghislain. Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. (2019) In: 3rd IFAC/IEEE CSS Workshop on Control of Systems Governed by Partial Differential Equations CPDE and XI Workshop Control of Distributed Parameter Systems (CDPS 2019), 20 May 2019 - 24 May 2019 (Oaxaca, Mexico).
Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. (2018) In: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, 1 May 2018 - 4 May 2018 (Valparaíso, Chile).
Alazard, Daniel and Aoues, Saïd and Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis. Disturbance rejection for a rotating flexible spacecraft: a port-Hamiltonian approach. (2018) In: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, 1 May 2018 - 4 May 2018 (Valparaíso, Chile).
Serhani, Anass and Matignon, Denis and Haine, Ghislain. Structure-Preserving Finite Volume Method for 2D Linear and Non-Linear Port-Hamiltonian Systems. (2018) In: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, 1 May 2018 - 4 May 2018 (Valparaíso, Chile).