
SCRIMP
Release 1.1

Giuseppe Ferraro, Michel Fournié, Ghislain Haine

Aug 20, 2024

CONTENTS

1 What is SCRIMP? 3
1.1 Port-Hamiltonian systems . 3
1.2 Coding philosophy . 4

2 User’s guide 5
2.1 How to install . 5
2.2 Getting started . 6
2.3 Examples . 12
2.4 Notebooks . 53
2.5 Graphical User Interface . 53
2.6 Bibliography . 53
2.7 Code documentation . 57

3 Credits 79
3.1 Development . 79
3.2 Funding . 79
3.3 Third-party . 79
3.4 How to cite SCRIMP? . 80

Python Module Index 81

Index 83

i

ii

SCRIMP, Release 1.1

Simulation and ContRol of Interactions in Multi-Physics

CONTENTS 1

SCRIMP, Release 1.1

2 CONTENTS

CHAPTER

ONE

WHAT IS SCRIMP?

SCRIMP (Simulation and ContRol of Interactions in Multi-Physics) is a python collection, namely a package, of meth-
ods and classes for the structure-preserving discretization and simulation of multi-physics models, using the formalism
of port-Hamiltonian systems (van der Schaft and Maschke (2002)).

SCRIMP aims at speeding the coding process of the Partitioned Finite Element Method on a wide range of (multi-
)physical systems (Brugnoli *et al.* (2021)), and scrimp and save time!

The documentation is available in pdf.

1.1 Port-Hamiltonian systems

1.1.1 What are they?

Let us sketch a rough portrait of port-Hamiltonian systems as they are considered in SCRIMP.

Port-Hamiltonian systems constitute a strongly structured class of control systems with collocated observation. It
relies on a functional form ℋ (the Hamiltonian), whose variables 𝛼𝑖 are the states of the system. The co-states
𝑀𝑖𝑒𝑖 := 𝛿𝛼𝑖

ℋ are defined as the variational derivative of the Hamiltonian with respect to the states, on the metric
induced by the 𝑀𝑖 matrices.

The dynamics is provided via trajectories belonging in a Dirac structure, which can be represented by two matrices (of
operators) 𝑀 symmetric and 𝐽 skew-symmetric as

𝑀

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d
d𝑡𝛼1(𝑡)

...
d
d𝑡𝛼𝑘(𝑡)
𝑓𝑅(𝑡)

−𝑦𝑒𝑥𝑝(𝑡)
𝑢𝑖𝑚𝑝(𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= 𝐽

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑒1(𝑡)
...

𝑒𝑘(𝑡)
𝑒𝑅(𝑡)
𝑢𝑒𝑥𝑝(𝑡)
−𝑦𝑖𝑚𝑝(𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
together with constitutive relations

𝑀𝑖𝑒𝑖(𝑡) = 𝛿𝛼𝑖(𝑡)ℋ(𝛼1(𝑡), · · · , 𝛼𝑘(𝑡)) 𝒩 (𝑡, 𝑓𝑅(𝑡), 𝑒𝑅(𝑡)) = 0

This structure allows to describe the evolution of the Hamiltonian along the trajectories

d

d𝑡
ℋ(𝛼1(𝑡), · · · , 𝛼𝑘(𝑡)) = −𝑒𝑅(𝑡)⊤𝑀𝑅𝑓𝑅(𝑡) + 𝑢𝑒𝑥𝑝(𝑡)

⊤𝑀𝑒𝑥𝑝𝑦𝑒𝑥𝑝(𝑡) + 𝑢𝑖𝑚𝑝(𝑡)
⊤𝑀𝑖𝑚𝑝𝑦𝑖𝑚𝑝(𝑡)

The first term of the right-hand side stands for a loss of energy, hence the name of resistive (or dissipative) port for
the couple (𝑓𝑅, 𝑒𝑅). The other two terms stands for exchanges with the environment through the control ports. One is
explicit, 𝑢𝑒𝑥𝑝, as a usual forcing term in the equations (its collocated output 𝑦𝑒𝑥𝑝 plays no role in the dynamics). The

3

https://doi.org/10.1016/S0393-0440(01)00083-3
https://doi.org/10.4236/jamp.2021.96088
https://g-haine.github.io/scrimp/latex/scrimp.pdf

SCRIMP, Release 1.1

other is implicit: 𝑢𝑖𝑚𝑝 does not appear directly in the dynamics, and its collocated output 𝑦𝑖𝑚𝑝 plays the role of the
Lagrange multiplier imposing the value of 𝑢𝑖𝑚𝑝.

Each indexed matrix 𝑀ℓ is the appropriate sub-matrix of 𝑀 .

A very important and useful fact is that the matrices 𝑀 and 𝐽 can depend on time and states!

1.1.2 The Partitioned Finite Element Method

The main objective of a structure-preserving discretization in the port-Hamiltonian formalism is to obtain a discrete
version of the power balance satisfied by the Hamiltonian functional.

A recent scheme, known as the Partitioned Finite Element Method (PFEM) (Cardoso-Ribeiro *et al.* (2021)),
achieves this goal.

The strategy follows three steps, inspired by the Mixed Finite Element Method for steady-state problem with homoge-
neous boundary condition

• write the weak form of the system;

• integrate by parts a partition of the state (such that the control appears); and

• project on finite element spaces.

1.2 Coding philosophy

SCRIMP assumes that the final user is not familiar with numerical simulations. The aim is to facilitate the first step
from modelisation to simulation by sticking as much as possible to the port-Hamiltonian framework, getting rid of
coding issues.

As such, these simplifications naturally imply a lack of optimization of the code. Nevertheless, the syntax of SCRIMP
try to let confirmed users to reach finer tuning in order to perform more sophisticated simulations.

A basic usage of SCRIMP consists in a script with the following steps:

• Define a domain

• Define at least one state. And of course, its co-state, in order to get a dynamical port

• Define a Finite Element Method on this port: give at least an order, at first glance, default values are sufficient

• Define algebraic ports (not mandatory) and its FEM

• Define control ports (not mandatory) and its FEM

• Define parameters

• Write down the forms on the flow side of the Dirac structure, i.e. the brick defining the matrix 𝑀

• Write down the forms on the effort side of the Dirac structure, i.e. th brick defining the matrix 𝐽

• Write down all the forms defining the constitutive relations, always with bricks
• Set up time scheme options: again, at first glance, default values are sufficient

• Solve

• Plot

• Export

We try to eliminate as much as possible the computer-side of the simulations, by following the port-Hamiltonian vo-
cabulary, always by keeping the possibility of fine tuning available.

4 Chapter 1. What is SCRIMP?

https://doi.org/10.1093/imamci/dnaa038

CHAPTER

TWO

USER’S GUIDE

2.1 How to install

2.1.1 Anaconda

The easiest way to install SCRIMP is to use a conda environment.

1. Install Anaconda

2. Clone the git repository: git clone https://github.com/g-haine/scrimp

3. Enter the folder: cd scrimp

4. Create the conda environment: conda env create --file /path/to/scrimp/scrimp.yml

5. Activate the environment: conda activate scrimp

6. Add scrimp to the PATH: conda develop /path/to/scrimp/

7. Finish with pip: pip install -e .

2.1.2 Tests

You may test your installation by running avalaible examples in the `examples` folder.

2.1.3 Code structure

SCRIMP is developped as a package: the __init__.py file of the /path/to/scrimp/ folder is the root file. Each subdi-
rectory is a sub-package of SCRIMP. Files are called module in this framework and may be called via the command
import. For instance the module linalg gathering linear algebra functions of the subpackage utils can be imported with
import scrimp.utils.linalg.

2.1.4 Documentation

You can find this documentation here.

It is automatically built upon the code comments using sphinx.

See Sphinx for further informations.

5

https://docs.anaconda.com/free/anaconda/install/index.html
https://g-haine.github.io/scrimp/latex/scrimp.pdf
https://www.sphinx-doc.org/

SCRIMP, Release 1.1

2.2 Getting started

In order to start using SCRIMP, you have to work in the conda environment scrimp from the installation by running
conda activate scrimp.

To understand the coding philosophy of SCRIMP, let us consider the 1D wave equation with Neumann boundary
control as a first example⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜌(𝑥)𝜕2𝑡𝑡𝑤(𝑡, 𝑥)− 𝜕𝑥 (𝑇 (𝑥)𝜕𝑥𝑤(𝑡, 𝑥)) = 0, 𝑡 ≥ 0, 𝑥 ∈ (0, 1),
𝜕𝑡𝑤(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈ (0, 1),
𝜕𝑥𝑤(0, 𝑥) = 𝑠0(𝑥), 𝑥 ∈ (0, 1),

−𝑇 (0)𝜕𝑥 (𝑤(𝑡, 0)) = 𝑢𝐿(𝑡), 𝑡 ≥ 0,
𝑇 (1)𝜕𝑥 (𝑤(𝑡, 1)) = 𝑢𝑅(𝑡), 𝑡 ≥ 0,

where 𝑤 denotes the deflection from the equilibrium position of a string, 𝜌 is its mass density and 𝑇 the Young’s
modulus. Note the minus sign on the control at the left end side, standing for the outward normal to the domain (0, 1).

The physics giving this equation has to be restated in the port-Hamiltonian formalism first.

2.2.1 Port-Hamiltonian framework

Let 𝛼𝑞 := 𝜕𝑥𝑤 denotes the strain and 𝛼𝑝 := 𝜌𝜕𝑡𝑤 the linear momentum. One can express the total mechanical energy
lying in the system ℋ, the Hamiltonian, as

ℋ(𝑡) = ℋ(𝛼𝑞(𝑡, 𝑥), 𝛼𝑝(𝑡, 𝑥)) :=
1

2

∫︁ 1

0

𝛼𝑞(𝑡, 𝑥)𝑇 (𝑥)𝛼𝑞(𝑡, 𝑥)d𝑥⏟ ⏞
Potential energy

+
1

2

∫︁ 1

0

𝛼𝑝(𝑡, 𝑥)
2

𝜌(𝑥)
d𝑥⏟ ⏞

Kinetic energy

.

The variables 𝛼𝑞 and 𝛼𝑝 are known as the state variables, or in the present case since ℋ represents an energy, the
energy variables.
Computing the variational derivative of ℋ with respect to these variables leads to the co-state variables, or in our case
the co-energy variables, i.e.

𝑒𝑞 := 𝛿𝛼𝑞ℋ = 𝑇𝛼𝑞, 𝑒𝑝 := 𝛿𝛼𝑝ℋ =
𝛼𝑝

𝜌
,

that is the stress and the velocity respectively.

Newton’s second law and Schwarz’s lemma give the following dynamics(︂
𝜕𝑡𝛼𝑞

𝜕𝑡𝛼𝑝

)︂
=

[︂
0 𝜕𝑥
𝜕𝑥 0

]︂(︂
𝑒𝑞
𝑒𝑝

)︂
.

Of course, trivial substitutions in this system would lead again to the initial string equation in second-order form.
However, by keeping the system as is, an important structure appears. Indeed, the matrix of operators above is formally
skew-symmetric. In other words, for all test functions 𝑓𝑞 and 𝑓𝑝 (compactly supported 𝐶∞ functions), one has thanks
to integration by parts (︀

𝑓𝑞 𝑓𝑝
)︀ [︂ 0 𝜕𝑥
𝜕𝑥 0

]︂(︂
𝑓𝑞
𝑓𝑝

)︂
= 0.

Together with the boundary Neumann condition, and defining collocated Dirichlet observations, this defines a (Stokes-)
Dirac structure, where solutions along time, i.e. trajectories, will belong.

The port-Hamiltonian system representing a (linear) vibrating string with Neumann boundary control and Dirichlet
boundary observation then writes (︂

𝜕𝑡𝛼𝑞

𝜕𝑡𝛼𝑝

)︂
=

[︂
0 𝜕𝑥
𝜕𝑥 0

]︂(︂
𝑒𝑞
𝑒𝑝

)︂
,

6 Chapter 2. User’s guide

https://en.wikipedia.org/wiki/Functional_derivative%3E

SCRIMP, Release 1.1

⎧⎪⎪⎨⎪⎪⎩
−𝑒𝑞(𝑡, 0) = 𝑢𝐿(𝑡),
𝑒𝑞(𝑡, 1) = 𝑢𝑅(𝑡),
𝑦𝐿(𝑡) = 𝑒𝑝(𝑡, 0),
𝑦𝑅(𝑡) = 𝑒𝑝(𝑡, 1),{︂
𝑒𝑞 = 𝑇𝛼𝑞,
𝑒𝑝 =

𝛼𝑝

𝜌 .

The two first blocks, giving in particular the dynamics, define the Dirac structure of the system. The third block is
known as the constitutive relations, and is needed to ensure uniqueness of solutions.

The importance of the Dirac structure relies, in particular, in the fact that it encloses the power balance satisfied by
the Hamiltonian. Indeed, along the trajectories, one has

d

d𝑡
ℋ(𝑡) =

d

d𝑡
ℋ(𝛼𝑞(𝑡), 𝛼𝑝(𝑡)) = 𝑦𝑅(𝑡)𝑢𝑅(𝑡)⏟ ⏞

power flowing through the right

+ 𝑦𝐿(𝑡)𝑢𝐿(𝑡)⏟ ⏞
power flowing through the left

.

In other words, the Dirac structure encodes the way the system communicates with its environment. In the present
example, it says that the variation of the total mechanical energy is given by the power supplied to the system at the
boundaries.

Each couple (𝜕𝑡𝛼𝑞, 𝑒𝑞), (𝜕𝑡𝛼𝑝, 𝑒𝑝), (𝑢𝐿, 𝑦𝐿) and (𝑢𝑅, 𝑦𝑅) is a port of the port-Hamiltonian system, and is associated
to a physically meaningful term in the power balance.

2.2.2 Structure-preserving discretization

The objective of a structure-preserving discretization method is to obtain a finite-dimensional Dirac structure that
encloses a discrete version of the power balance. There is several ways to achieve this goal, but SCRIMP focuses on
a particular application of the Mixed Finite Element Mehod, called the Partitioned Finite Element Method.

Remark: The 1D case does simplify the difficulties coming from the boundary terms. Indeed, here the functional
spaces for the controls 𝑢𝐿, 𝑢𝑅 and the observations 𝑦𝐿, 𝑦𝑅 are nothing but R.

Let 𝜙𝑞 and 𝜙𝑝 be smooth test functions, and 𝛿𝑚𝑥 denote the Kronecker symbol. One can write the weak formulation
of the Dirac Structure as follows⎧⎪⎪⎨⎪⎪⎩

∫︀ 1

0
𝜕𝑡𝛼𝑞(𝑡, 𝑥)𝜙𝑞(𝑥)d𝑥 =

∫︀ 1

0
𝜕𝑥𝑒𝑝(𝑡, 𝑥)𝜙𝑞(𝑥)d𝑥,∫︀ 1

0
𝜕𝑡𝛼𝑝(𝑡, 𝑥)𝜙𝑝(𝑥)d𝑥 =

∫︀ 1

0
𝜕𝑥𝑒𝑞(𝑡, 𝑥)𝜙𝑝(𝑥)d𝑥,

𝑦𝐿(𝑡) = 𝛿0𝑥𝑒𝑝(𝑡, 𝑥),
𝑦𝑅(𝑡) = 𝛿1𝑥𝑒𝑝(𝑡, 𝑥).

Integrating by parts the second line make the controls appear⎧⎪⎪⎨⎪⎪⎩
∫︀ 1

0
𝜕𝑡𝛼𝑞(𝑡, 𝑥)𝜙𝑞(𝑥)d𝑥 =

∫︀ 1

0
𝜕𝑥𝑒𝑝(𝑡, 𝑥)𝜙𝑞(𝑥)d𝑥,∫︀ 1

0
𝜕𝑡𝛼𝑝(𝑡, 𝑥)𝜙𝑝(𝑥)d𝑥 = −

∫︀ 1

0
𝑒𝑞(𝑡, 𝑥)𝜕𝑥𝜙𝑝(𝑥)d𝑥+ 𝑢𝑅(𝑡)𝜙𝑝(1) + 𝑢𝐿(𝑡)𝜙𝑝(0),

𝑦𝐿(𝑡) = 𝛿0𝑥𝑒𝑝(𝑡, 𝑥),
𝑦𝑅(𝑡) = 𝛿1𝑥𝑒𝑝(𝑡, 𝑥).

Now, let (𝜙𝑖
𝑞)1≤𝑖≤𝑁𝑞

and (𝜙𝑘
𝑝)1≤𝑘≤𝑁𝑝

be two finite families of approximations for the 𝑞-type port and the 𝑝-type port
respectively, typically finite element families, and write the discrete weak formulation with those families, one has for
all 1 ≤ 𝑖 ≤ 𝑁𝑞 and all 1 ≤ 𝑘 ≤ 𝑁𝑝⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︀𝑁𝑞

𝑗=1

∫︀ 1

0
𝜙𝑗
𝑞(𝑥)𝜙

𝑖
𝑞(𝑥)d𝑥

d
d𝑡𝛼

𝑗
𝑞(𝑡) =

∑︀𝑁𝑝

ℓ=1

∫︀ 1

0
𝜕𝑥𝜙

ℓ
𝑝(𝑥)𝜙

𝑖
𝑞(𝑥)d𝑥 𝑒

ℓ
𝑝(𝑡),∑︀𝑁𝑝

ℓ=1

∫︀ 1

0
𝜙ℓ
𝑝(𝑥)𝜙

𝑘
𝑝(𝑥)d𝑥

d
d𝑡𝛼

ℓ
𝑝(𝑡) = −

∑︀𝑁𝑞

𝑗=1

∫︀ 1

0
𝜙𝑗
𝑞(𝑥)𝜕𝑥𝜙

𝑘
𝑝(𝑥)d𝑥 𝑒

𝑗
𝑞(𝑡)

+𝑢𝑅(𝑡)𝜙
𝑘
𝑝(1) + 𝑢𝐿(𝑡)𝜙

𝑘
𝑝(0),

𝑦𝐿(𝑡) =
∑︀𝑁𝑝

ℓ=1 𝜙
ℓ
𝑝(0) 𝑒

ℓ
𝑝(𝑡),

𝑦𝑅(𝑡) =
∑︀𝑁𝑝

ℓ=1 𝜙
ℓ
𝑝(1) 𝑒

ℓ
𝑝(𝑡),

2.2. Getting started 7

SCRIMP, Release 1.1

which rewrites in matrix form⎡⎢⎢⎣
𝑀𝑞 0 0 0
0 𝑀𝑝 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⏟ ⏞

=𝑀

⎛⎜⎜⎝
d
d𝑡𝛼𝑞(𝑡)
d
d𝑡𝛼𝑝(𝑡)

−𝑦𝐿(𝑡)
−𝑦𝑅(𝑡)

⎞⎟⎟⎠ =

⎡⎢⎢⎣
0 𝐷 0 0

−𝐷⊤ 0 𝐵𝐿 𝐵𝑅

0 −𝐵⊤
𝐿 0 0

0 −𝐵⊤
𝑅 0 0

⎤⎥⎥⎦
⏟ ⏞

=𝐽

⎛⎜⎜⎝
𝑒𝑞(𝑡)

𝑒𝑝(𝑡)

𝑢𝐿(𝑡)
𝑢𝑅(𝑡)

⎞⎟⎟⎠ ,

where 𝛼⋆(𝑡) :=
(︀
𝛼1
⋆(𝑡) · · · 𝛼𝑁⋆

⋆

)︀⊤, 𝑒⋆(𝑡) :=
(︀
𝑒1⋆(𝑡) · · · 𝑒𝑁⋆

⋆

)︀⊤, and

(𝑀𝑞)𝑖𝑗 :=

∫︁ 1

0

𝜙𝑗
𝑞(𝑥)𝜙

𝑖
𝑞(𝑥)d𝑥, (𝑀𝑝)𝑘ℓ :=

∫︁ 1

0

𝜙ℓ
𝑝(𝑥)𝜙

𝑘
𝑝(𝑥)d𝑥,

(𝐷)𝑖ℓ :=

∫︁ 1

0

𝜕𝑥𝜙
ℓ
𝑝(𝑥)𝜙

𝑖
𝑞(𝑥)d𝑥, (𝐵𝐿)𝑘 := 𝜙𝑘

𝑝(0), (𝐵𝑅)𝑘 := 𝜙𝑘
𝑝(1).

Abusing the language, the left-hand side will be called the flow of the Dirac structure in SCRIMP, while the right-
hand side will be called the effort.
Now one can approximate the constitutive relations in those families by projection of their weak formulations{︃ ∫︀ 1

0
𝑒𝑞(𝑡, 𝑥)𝜙𝑞(𝑥)d𝑥 =

∫︀ 1

0
𝑇 (𝑥)𝛼𝑞(𝑡, 𝑥)𝜙𝑞(𝑥)d𝑥,∫︀ 1

0
𝑒𝑝(𝑡, 𝑥)𝜙𝑝(𝑥)d𝑥 =

∫︀ 1

0
𝛼𝑝(𝑡,𝑥)
𝜌(𝑥) 𝜙𝑝(𝑥)d𝑥,

from which one can deduce the matrix form of the discrete weak formulation of the constitutive relation{︂
𝑀𝑞𝑒𝑞(𝑡) = 𝑀𝑇𝛼𝑞(𝑡),

𝑀𝑝𝑒𝑝(𝑡) = 𝑀𝜌𝛼𝑝(𝑡),

where

(𝑀𝑇)𝑖𝑗 :=

∫︁ 1

0

𝑇 (𝑥)𝜙𝑗
𝑞(𝑥)𝜙

𝑖
𝑞(𝑥)d𝑥, (𝑀𝜌)𝑘ℓ :=

∫︁ 1

0

𝜙ℓ
𝑝(𝑥)

𝜌(𝑥)
𝜙𝑘
𝑝(𝑥)d𝑥.

Finally, the discrete Hamiltonian ℋ𝑑 is defined as the evaluation of ℋ on the approximation of the state variables

ℋ𝑑(𝑡) := ℋ(𝛼𝑑
𝑞(𝑡, 𝑥), 𝛼

𝑑
𝑝(𝑡)) =

1

2
𝛼𝑞(𝑡)

⊤𝑀𝑇𝛼𝑞(𝑡) +
1

2
𝛼𝑝(𝑡)

⊤𝑀𝜌𝛼𝑝(𝑡).

The discrete power balance is then easily deduced from the above matrix formulations, thanks to the symmetry of𝑀
and the skew-symmetry of 𝐽

d

d𝑡
ℋ𝑑(𝑡) = 𝑦𝑅(𝑡)𝑢𝑅(𝑡) + 𝑦𝐿(𝑡)𝑢𝐿(𝑡).

Remark: The discrete system that has to be solved numerically is a Differential Algebraic Equation (DAE). There
exists some case (as in this example), where one can write the co-state formulation of the system by substituting the
constitutive relations at the continuous level to get a more classical Ordinary Differential Equation (ODE)⎡⎢⎢⎣

̃︁𝑀𝑞 0 0 0

0 ̃︁𝑀𝑝 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎛⎜⎜⎝

d
d𝑡𝑒𝑞(𝑡)
d
d𝑡𝑒𝑝(𝑡)

−𝑦𝐿(𝑡)
−𝑦𝑅(𝑡)

⎞⎟⎟⎠ =

⎡⎢⎢⎣
0 𝐷 0 0

−𝐷⊤ 0 𝐵𝐿 𝐵𝑅

0 −𝐵⊤
𝐿 0 0

0 −𝐵⊤
𝑅 0 0

⎤⎥⎥⎦
⎛⎜⎜⎝
𝑒𝑞(𝑡)

𝑒𝑝(𝑡)

𝑢𝐿(𝑡)
𝑢𝑅(𝑡)

⎞⎟⎟⎠ ,

where this time the mass matrices on the left-hand side are both weighted with respect to the physical parameters

(̃︁𝑀𝑞)𝑖𝑗 :=

∫︁ 1

0

𝑇−1(𝑥)𝜙𝑗
𝑞(𝑥)𝜙

𝑖
𝑞(𝑥)d𝑥, (̃︁𝑀𝑝)𝑘ℓ :=

∫︁ 1

0

𝜌(𝑥)𝜙ℓ
𝑝(𝑥)𝜙

𝑘
𝑝(𝑥)d𝑥.

8 Chapter 2. User’s guide

SCRIMP, Release 1.1

2.2.3 Coding within SCRIMP

The following code is available in the file wave_1D.py of the sandbox folder of scrimp.

To start, import SCRIMP and create a distributed port-Hamiltonian system (DPHS) called, e.g., wave

import scrimp as S

wave = S.DPHS("real")

Then, define the domain Ω = (0, 1), with a mesh-size parameter ℎ, and add it to the DPHS

domain = S.Domain("Interval", {"L": 1., "h": 0.01})
wave.set_domain(domain)

This creates a mesh of the interval Ω = (0, 1).

Important to keep in mind: the domain is composed of regions, denoted by integers. The built-in geometry of an
interval available in the code returns 1 for the domain Ω, 10 for the left-end and 11 for the right-end. Informations
about available geometries and the indices of their regions can be found in the documentation or via the function
built_in_geometries() available in scrimp.utils.mesh.

On this domain, we define two states and add them to the DPHS

alpha_q = S.State("q", "Strain", "scalar-field")
alpha_p = S.State("p", "Linear momentum", "scalar-field")
wave.add_state(alpha_q)
wave.add_state(alpha_p)

and the two associated co-states

e_q = S.CoState("e_q", "Stress", alpha_q)
e_p = S.CoState("e_p", "Velocity", alpha_p)
wave.add_costate(e_q)
wave.add_costate(e_p)

These latter calls create automatically two non-algebraic ports, named after their respective state. Note that we simplify
the notations and do not write alpha_q and alpha_p but q and p for the sake of readability.

Finally, we create and add the two control-observation ports with

left_end = S.Control_Port("Boundary control (left)", "U_L", "Normal force", "Y_L",
→˓"Velocity", "scalar-field", region=10)
right_end = S.Control_Port("Boundary control (right)", "U_R", "Normal force", "Y_R",
→˓"Velocity", "scalar-field", region=11)
wave.add_control_port(left_end)
wave.add_control_port(right_end)

Note the crucial keyword region to restrict each port to its end. By default, it would apply everywhere.

Syntaxic note: although 𝑦 is the observation in the theory of port-Hamiltonian systems, it is also the second space
variable for N-D problems. This name is thus reserved for this latter aim and forbidden in all definitions of a DPHS.
Nevertheless, the code being case-sensitive, it is possible to name the observation Y. To avoid mistakes, we take the
habit to always use this syntax, this is why we denoted our controls and observations with capital letters even if the
problem does not occur in this 1D example.

To be able to write the discrete weak formulation of the system, one need to set four finite element families, associated
to each port. Only two arguments are mandatory: the name of the port and the degree of the approximations.

2.2. Getting started 9

SCRIMP, Release 1.1

V_q = S.FEM("q", 2)
V_p = S.FEM("p", 1)
V_L = S.FEM("Boundary control (left)", 1)
V_R = S.FEM("Boundary control (right)", 1)

This will construct a family of Lagrange finite elements (default choice) for each port, with the prescribed order. Re-
member that the boundary is only 2 disconnected points in this 1D case, so the only possibility for the finite element is
1 degree of freedom on each of them: Lagrange elements of order 1 is the easy way to do that.

Of course, this FEM must be added to the DPHS

wave.add_FEM(V_q)
wave.add_FEM(V_p)
wave.add_FEM(V_L)
wave.add_FEM(V_R)

Finally, the physical parameters of the experiment have to be defined. In SCRIMP, a parameter is associated to a port.

T = S.Parameter("T", "Young's modulus", "scalar-field", "1", "q")
rho = S.Parameter("rho", "Mass density", "scalar-field", "1 + x*(1-x)", "p")
wave.add_parameter(T)
wave.add_parameter(rho)

The first argument will be the string that can be used in forms, the second argument is a human-readable description,
the third one set the kind of the parameter, the fourth one is the mathematical expression defining the parameter, and
finally the fifth argument is the name of the associated port.

It is now possible to write the weak forms defining the system. Only the non-zero blocks are mandatory. Furthermore,
the place of the block is automatically determined by GetFEM. The syntax follow a simple rule: the unknown trial
function q is automatically associated to the test function Test_q (note the capital T on Test), and so on.

Like we did for each call, the first step is to create the object, then to add it to the DPHS. As there is a lot of bricks, let
us make a loop using a python list

bricks = [
M matrix, on the flow side
S.Brick("M_q", "q * Test_q", [1], dt=True, position="flow"),
S.Brick("M_p", "p * Test_p", [1], dt=True, position="flow"),
S.Brick("M_Y_L", "Y_L * Test_Y_L", [10], position="flow"),
S.Brick("M_Y_R", "Y_R * Test_Y_R", [11], position="flow"),

J matrix, on the effort side
S.Brick("D", "Grad(e_p) * Test_q", [1], position="effort"),

S.Brick("-D^T", "-e_q * Grad(Test_p)", [1], position="effort"),
S.Brick("B_L", "-U_L * Test_p", [10], position="effort"),
S.Brick("B_R", "U_R * Test_p", [11], position="effort"),

S.Brick("-B_L^T", "e_p * Test_Y_L", [10], position="effort"),
S.Brick("-B_R^T", "-e_p * Test_Y_R", [11], position="effort"),

Constitutive relations
S.Brick("-M_e_q", "-e_q * Test_e_q", [1]),
S.Brick("CR_q", "q*T * Test_e_q", [1]),

(continues on next page)

10 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

S.Brick("-M_e_p", "-e_p * Test_e_p", [1]),
S.Brick("CR_p", "p/rho * Test_e_p", [1]),
]

for brick in bricks:
wave.add_brick(brick)

The first argument of a brick is a human-readable name, the second one is the form, the third is a list (hence the
[and]) of integers, listing all the regions where the form applies. The optional parameter dt=True is to inform
SCRIMP that this block matrix will apply on the time-derivative of the unknown trial function, and finally the op-
tion parameter position="flow" informs SCRIMP that this block is a part of the flow side of the Dirac structure,
position="effort" do the same for the effort side, and without this keyword, SCRIMP places the brick as part of
the constitutive relations.

Syntaxic note: the constitutive relations have to be written under an implicit formulation 𝐹 = 0. Keep in mind that a
minus sign will often appear because of that.

The port-Hamiltonian system is now fully stated. It remains to set the controls and the initial values of the states before
solving

expression_left = "-sin(2*pi*t)"
expression_right = "0."
wave.set_control("Boundary control (left)", expression_left)
wave.set_control("Boundary control (right)", expression_right)

q_init = "2.*np.exp(-50.*(x-0.5)*(x-0.5))"
p_init = "0."
wave.set_initial_value("q", q_init)
wave.set_initial_value("p", p_init)

We can now solve the system (with default experiment parameters)

wave.solve()

To end, one can also add the Hamiltonian terms and plot the contribution of each port to the balance equation

wave.hamiltonian.set_name("Mechanical energy")
terms = [

S.Term("Kinetic energy", "0.5*p*p/rho", [1]),
S.Term("Potential energy", "0.5*q*T*q", [1]),

]

for term in terms:
wave.hamiltonian.add_term(term)

wave.plot_Hamiltonian()

2.2. Getting started 11

SCRIMP, Release 1.1

One can appreciate the structure-preserving property by looking at the dashed line, showing the evolution of

ℋ𝑑(𝑡)−
∫︁ 𝑡

0

𝑢𝑅(𝑠)𝑦𝑅(𝑠)d𝑠−
∫︁ 𝑡

0

𝑢𝐿(𝑠)𝑦𝐿(𝑠)d𝑠.

And now? It is time to see more examples.

2.3 Examples

We provide some examples coming from our publications.

2.3.1 The wave equation

• file: examples/wave.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 22 nov. 2022

• brief: 2D wave equations

examples.wave.wave_eq()

A structure-preserving discretization of the wave equation with mixed boundary control

Formulation DAE (energy/co-energy), Grad-Grad, Mixed boundary condition on the Rectangle Undamped case.

12 Chapter 2. User’s guide

examples.html

SCRIMP, Release 1.1

Setting

Let us consider the 2D wave equation with mixed boundary controls on a bounded rectangle Ω := (0, 𝐿)× (0, ℓ), with
boundaries Γ𝑁 := ((0, 𝐿)× {0, ℓ}) ∪ ({𝐿} × (0, ℓ)) and Γ𝐷 := {0} × (0, ℓ).

The deflection of the membrane from the equilibrium 𝑤 satisfies classicaly⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜌(𝑥)𝜕2𝑡𝑡𝑤(𝑡, 𝑥)− div (𝑇 (𝑥) · grad (𝑤(𝑡, 𝑥))) = 0, 𝑡 ≥ 0, 𝑥 ∈ Ω,

𝜕𝑡𝑤(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈ Ω,
𝜕𝑥𝑤(0, 𝑥) = 𝑠0(𝑥), 𝑥 ∈ Ω,

𝑇 (𝑠) · grad (𝑤(𝑡, 𝑠)) = 𝑢𝑁 (𝑡, 𝑠), 𝑡 ≥ 0, 𝑠 ∈ Γ𝑁 ,
𝜕𝑡𝑤(𝑡, 𝑠) = 𝑢𝐷(𝑡, 𝑠), 𝑡 ≥ 0, 𝑠 ∈ Γ𝐷,

where 𝜌 is the mass density and 𝑇 the Young’s modulus. The subscript 𝑁 stands for Neumann, while the subscript
𝐷 stands for Dirichlet (to be fair, this is not really a Dirichlet boundary condition, as it imposes 𝜕𝑡𝑤 and not 𝑤 at the
boundary Γ𝐷).

Let us state the physics in the port-Hamiltonian formalism.

Port-Hamiltonian framework

Let 𝛼𝑞 := grad𝑤 denotes the strain and 𝛼𝑝 := 𝜌𝜕𝑡𝑤 the linear momentum. One can express the total mechanical
energy lying in the system ℋ, the Hamiltonian, as

ℋ(𝑡) = ℋ(𝛼𝑞(𝑡, 𝑥), 𝛼𝑝(𝑡, 𝑥)) :=
1

2

∫︁
Ω

𝛼𝑞(𝑡, 𝑥) · 𝑇 (𝑥) · 𝛼𝑞(𝑡, 𝑥)d𝑥⏟ ⏞
Potential energy

+
1

2

∫︁
Ω

𝛼𝑝(𝑡, 𝑥)
2

𝜌(𝑥)
d𝑥⏟ ⏞

Kinetic energy

.

The co-energy variables are, as in the 1D case

𝑒𝑞 := 𝛿𝛼𝑞
ℋ = 𝑇 · 𝛼𝑞, 𝑒𝑝 := 𝛿𝛼𝑝

ℋ =
𝛼𝑝

𝜌
,

that is the stress and the velocity respectively.

Newton’s second law and Schwarz’s lemma give the following dynamics(︂
𝜕𝑡𝛼𝑞

𝜕𝑡𝛼𝑝

)︂
=

[︂
0 grad
div 0

]︂(︂
𝑒𝑞
𝑒𝑝

)︂
.

Of course, this system allows to recover the initial wave equation in second-order form.

The port-Hamiltonian system representing a (linear) vibrating membrane with mixed boundary controls then writes(︂
𝜕𝑡𝛼𝑞

𝜕𝑡𝛼𝑝

)︂
=

[︂
0 grad
div 0

]︂(︂
𝑒𝑞
𝑒𝑝

)︂
,⎧⎪⎪⎨⎪⎪⎩

𝑒𝑞(𝑡, 𝑠) = 𝑢𝑁 (𝑡, 𝑠), 𝑡 ≥ 0, 𝑠 ∈ Γ𝑁 ,
𝑒𝑝(𝑡, 𝑠) = 𝑢𝐷(𝑡, 𝑠), 𝑡 ≥ 0, 𝑠 ∈ Γ𝐷,
𝑦𝑁 (𝑡, 𝑠) = 𝑒𝑝(𝑡, 𝑠), 𝑡 ≥ 0, 𝑠 ∈ Γ𝑁 ,
𝑦𝐷(𝑡, 𝑠) = 𝑒𝑞(𝑡, 𝑠), 𝑡 ≥ 0, 𝑠 ∈ Γ𝐷,{︂

𝑒𝑞 = 𝑇 · 𝛼𝑞,
𝑒𝑝 =

𝛼𝑝

𝜌 .

The power balance satisfied by the Hamiltonian is

d

d𝑡
ℋ(𝑡) = ⟨𝑦𝑁 (𝑡, ·), 𝑢𝑁 (𝑡, ·)⟩Γ𝑁⏟ ⏞

power flowing through Γ𝑁

+ ⟨𝑢𝐷(𝑡, ·), 𝑦𝐷(𝑡, ·)⟩Γ𝐷⏟ ⏞
power flowing through Γ𝐷

,

where ⟨·, ·⟩Γ is a boundary duality bracket 𝐻 1
2 , 𝐻− 1

2 at the boundary Γ.

2.3. Examples 13

SCRIMP, Release 1.1

Structure-preserving discretization

Let 𝜙𝑞 and 𝜙𝑝 be smooth test functions on Ω, and 𝜓𝑁 and 𝜓𝐷 be smooth test functions on Γ𝑁 and Γ𝐷 respectively.
One can write the weak formulation of the Dirac Structure as follows⎧⎪⎪⎨⎪⎪⎩

∫︀
Ω
𝜕𝑡𝛼𝑞(𝑡, 𝑥)𝜙𝑞(𝑥)d𝑥 =

∫︀
Ω
grad (𝑒𝑝(𝑡, 𝑥)) · 𝜙𝑞(𝑥)d𝑥,∫︀

Ω
𝜕𝑡𝛼𝑝(𝑡, 𝑥)𝜙𝑝(𝑥)d𝑥 =

∫︀
Ω
div (𝑒𝑞(𝑡, 𝑥))𝜙𝑝(𝑥)d𝑥,

⟨𝑦𝑁 , 𝜓𝑁 ⟩Γ𝑁
= ⟨𝑒𝑝, 𝜓𝑁 ⟩Γ𝑁

,

⟨𝑢𝐷, 𝜓𝐷⟩Γ𝐷
= ⟨𝑒𝑝, 𝜓𝐷⟩Γ𝐷

.

(2.1)

Integrating by parts the second line make the control 𝑢𝑁 and the observation 𝑦𝐷 appear∫︁
Ω

𝜕𝑡𝛼𝑝(𝑡, 𝑥)𝜙𝑝(𝑥)d𝑥 = −
∫︁
Ω

𝑒𝑞(𝑡, 𝑥) · grad (𝜙𝑝(𝑥)) d𝑥+ ⟨𝜙𝑝, 𝑢𝑁 ⟩Γ𝑁
+ ⟨𝜙𝑝, 𝑦𝐷⟩Γ𝐷

.

Now, let (𝜙𝑖
𝑞)1≤𝑖≤𝑁𝑞

⊂ 𝐿2(Ω) and (𝜙𝑘
𝑝)1≤𝑘≤𝑁𝑝

⊂ 𝐻1(Ω) be two finite families of approximations for the 𝑞-type port
and the 𝑝-type port respectively, typically discontinuous and continuous Galerkin finite elements respectively. Denote
also (𝜓𝑚

𝑁)1≤𝑚𝑁≤𝑁𝑁
⊂ 𝐻

1
2 (Γ𝑁) and (𝜓𝑚

𝐷)1≤𝑚𝐷≤𝑁𝐷
⊂ 𝐻

1
2 (Γ𝐷). In particular, the latter choices imply that the

duality brackets at the boundary reduce to simple 𝐿2 scalar products.

Writing the discrete weak formulation with those families, one has for all 1 ≤ 𝑖 ≤ 𝑁𝑞 , all 1 ≤ 𝑘 ≤ 𝑁𝑝, all 1 ≤ 𝑚𝑁 ≤
𝑁𝑁 and all 1 ≤ 𝑚𝐷 ≤ 𝑁𝐷⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀𝑁𝑞

𝑗=1

∫︀
Ω
𝜙𝑗
𝑞(𝑥)𝜙

𝑖
𝑞(𝑥)d𝑥

d
d𝑡𝛼

𝑗
𝑞(𝑡) =

∑︀𝑁𝑝

ℓ=1

∫︀
Ω
grad

(︀
𝜙ℓ
𝑝(𝑥)

)︀
· 𝜙𝑖

𝑞(𝑥)d𝑥 𝑒
ℓ
𝑝(𝑡),∑︀𝑁𝑝

ℓ=1

∫︀
Ω
𝜙ℓ
𝑝(𝑥)𝜙

𝑘
𝑝(𝑥)d𝑥

d
d𝑡𝛼

ℓ
𝑝(𝑡) = −

∑︀𝑁𝑞

𝑗=1

∫︀
Ω
𝜙𝑗
𝑞(𝑥) · grad

(︀
𝜙𝑘
𝑝(𝑥)

)︀
d𝑥 𝑒𝑗𝑞(𝑡)

+
∑︀𝑁𝑁

𝑛𝑁=1

∫︀
Γ𝑁

𝜙𝑘
𝑝(𝑠)𝜓

𝑛𝑁

𝑁 (𝑠)d𝑠 𝑢𝑛𝑁

𝑁 (𝑡)

+
∑︀𝑁𝐷

𝑛𝐷=1

∫︀
Γ𝐷

𝜙𝑘
𝑝(𝑠)𝜓

𝑛𝐷

𝐷 (𝑠)d𝑠 𝑦𝑛𝐷

𝐷 (𝑡),∑︀𝑁𝑁

𝑛𝑁=1 ⟨𝜓
𝑛𝑁

𝑁 , 𝜓𝑚𝑁

𝑁 ⟩Γ𝑁
𝑦𝑛𝑁

𝑁 (𝑡) =
∑︀𝑁𝑝

ℓ=1

∫︀
Γ𝑁

𝜙ℓ
𝑝(𝑠)𝜓

𝑚𝑁

𝑁 (𝑠)d𝑠 𝑒ℓ𝑝(𝑡),∑︀𝑁𝐷

𝑛𝐷=1 ⟨𝜓
𝑛𝐷

𝐷 , 𝜓𝑚𝐷

𝐷 ⟩Γ𝐷
𝑢𝑛𝐷

𝐷 (𝑡) =
∑︀𝑁𝑝

ℓ=1

∫︀
Γ𝐷

𝜙ℓ
𝑝(𝑠)𝜓

𝑚𝐷

𝐷 (𝑠)d𝑠 𝑒ℓ𝑝(𝑡),

(2.2)

which rewrites in matrix form⎡⎢⎢⎣
𝑀𝑞 0 0 0
0 𝑀𝑝 0 0
0 0 𝑀𝑁 0
0 0 0 𝑀𝐷

⎤⎥⎥⎦
⏟ ⏞

=𝑀

⎛⎜⎜⎝
d
d𝑡𝛼𝑞(𝑡)
d
d𝑡𝛼𝑝(𝑡)

−𝑦𝑁 (𝑡)
𝑢𝐷(𝑡)

⎞⎟⎟⎠ =

⎡⎢⎢⎣
0 𝐷 0 0

−𝐷⊤ 0 𝐵𝑁 −𝐵𝑇
𝐷

0 −𝐵⊤
𝑁 0 0

0 𝐵𝐷 0 0

⎤⎥⎥⎦
⏟ ⏞

=𝐽

⎛⎜⎜⎝
𝑒𝑞(𝑡)

𝑒𝑝(𝑡)

𝑢𝑁 (𝑡)
−𝑦𝐷(𝑡)

⎞⎟⎟⎠ ,

where ⋆(𝑡) :=
(︀
⋆1(𝑡) · · · ⋆𝑁⋆

)︀⊤ and

(𝑀𝑞)𝑖𝑗 :=

∫︁
Ω

𝜙𝑗
𝑞(𝑥) · 𝜙𝑖

𝑞(𝑥)d𝑥, (𝑀𝑝)𝑘ℓ :=

∫︁
Ω

𝜙ℓ
𝑝(𝑥)𝜙

𝑘
𝑝(𝑥)d𝑥, (2.3)

(𝑀𝑁)𝑚𝑁𝑛𝑁
:=

∫︁
Γ𝑁

𝜓𝑛𝑁

𝑁 (𝑠)𝜓𝑚𝑁

𝑁 (𝑠)d𝑠, (𝑀𝐷)𝑚𝐷𝑛𝐷
:=

∫︁
Γ𝐷

𝜓𝑛𝐷

𝐷 (𝑠)𝜓𝑚𝐷

𝐷 (𝑠)d𝑠, (2.4)

(𝐷)𝑖ℓ :=

∫︁
Ω

grad
(︀
𝜙ℓ
𝑝(𝑥)

)︀
· 𝜙𝑖

𝑞(𝑥)d𝑥,

(𝐵𝑁)𝑛𝑁𝑘 :=

∫︁
Γ𝑁

𝜙𝑘
𝑝(𝑠)𝜓

𝑛𝑁

𝑁 (𝑠)d𝑠, (𝐵𝐷)𝑚𝐷ℓ :=

∫︁
Γ𝐷

𝜙ℓ
𝑝(𝑠)𝜓

𝑚𝐷

𝐷 (𝑠)d𝑠,

Now one can approximate the constitutive relations in those families by projection of their weak formulations{︃ ∫︀
Ω
𝑒𝑞(𝑡, 𝑥) · 𝜙𝑞(𝑥)d𝑥 =

∫︀
Ω
𝛼𝑞(𝑡, 𝑥) · 𝑇 (𝑥) · 𝜙𝑞(𝑥)d𝑥,∫︀

Ω
𝑒𝑝(𝑡, 𝑥)𝜙𝑝(𝑥)d𝑥 =

∫︀
Ω

𝛼𝑝(𝑡,𝑥)
𝜌(𝑥) 𝜙𝑝(𝑥)d𝑥,

14 Chapter 2. User’s guide

SCRIMP, Release 1.1

from which one can deduce the matrix form of the discrete weak formulation of the constitutive relation{︂
𝑀𝑞𝑒𝑞(𝑡) = 𝑀𝑇𝛼𝑞(𝑡),

𝑀𝑝𝑒𝑝(𝑡) = 𝑀𝜌𝛼𝑝(𝑡),

where

(𝑀𝑇)𝑖𝑗 :=

∫︁
Ω

𝜙𝑗
𝑞(𝑥) · 𝑇 (𝑥) · 𝜙𝑖

𝑞(𝑥)d𝑥, (𝑀𝜌)𝑘ℓ :=

∫︁
Ω

𝜙ℓ
𝑝(𝑥)

𝜌(𝑥)
𝜙𝑘
𝑝(𝑥)d𝑥. (2.5)

Finally, the discrete Hamiltonian ℋ𝑑 is defined as the evaluation of ℋ on the approximation of the state variables

ℋ𝑑(𝑡) := ℋ(𝛼𝑑
𝑞(𝑡, 𝑥), 𝛼

𝑑
𝑝(𝑡)) =

1

2
𝛼𝑞(𝑡)

⊤𝑀𝑇𝛼𝑞(𝑡) +
1

2
𝛼𝑝(𝑡)

⊤𝑀𝜌𝛼𝑝(𝑡).

The discrete power balance is then easily deduced from the above matrix formulations, thanks to the symmetry of𝑀
and the skew-symmetry of 𝐽

d

d𝑡
ℋ𝑑(𝑡) = 𝑦𝑁 (𝑡)⊤𝑀𝑁𝑢𝑁 (𝑡) + 𝑢𝐷(𝑡)⊤𝑀𝐷𝑦𝐷(𝑡).

Simulation

Let us start by importing the scrimp package

Import scrimp
import scrimp as S

Now define a real Distributed Port-Hamiltonian System

Init the distributed port-Hamiltonian system
wave = S.DPHS("real")

The domain is 2-dimensional, and is a rectangle of length 2 and width 1. We use the built-in geometry Rectangle and
choose a mesh size parameter of 0.1 with the following command.

Set the domain (using the built-in geometry `Rectangle`)
Labels: Omega = 1, Gamma_Bottom = 10, Gamma_Right = 11, Gamma_Top = 12, Gamma_Left = 13
rectangle = S.Domain("Rectangle", {"L": 2.0, "l": 1.0, "h": 0.1})

And add it to the dphs
wave.set_domain(rectangle)

Defining the states and co-states, care must be taken: the Strain is a vector-field.

Define the variables and their discretizations
states = [

S.State("q", "Strain", "vector-field"),
S.State("p", "Linear momentum", "scalar-field"),

]
costates = [

S.CoState("e_q", "Stress", states[0]),
S.CoState("e_p", "Velocity", states[1]),

]

Add them to the dphs
(continues on next page)

2.3. Examples 15

SCRIMP, Release 1.1

(continued from previous page)

for state in states:
wave.add_state(state)

for costate in costates:
wave.add_costate(costate)

As the domain is the built-in geometry Rectangle, the boundary is composed of four parts, with indices 10, 11, 12
and 13, respectively for the lower, right, upper and left edge. Each of them will have its own control port, allowing e.g.
mixed boundary conditions.

Indeed in the above example, we choose Neumann boundary condition on Γ𝑁 , i.e. on 10, 11 and 12, while we choose
Dirichlet boundary condition on Γ𝐷, i.e. on 13.

The choice to integrate by part the second line of (2.1) has a consequence for the port at boundary 13, as it is then in
the flow part of the Dirac structure, as can be seen in (2.2). We indicate this using the keyword position="flow".

Define the control ports
control_ports = [

S.Control_Port(
"Boundary control (bottom)",
"U_B",
"Normal force",
"Y_B",
"Velocity trace",
"scalar-field",
region=10,

),
S.Control_Port(

"Boundary control (right)",
"U_R",
"Normal force",
"Y_R",
"Velocity trace",
"scalar-field",
region=11,

),
S.Control_Port(

"Boundary control (top)",
"U_T",
"Normal force",
"Y_T",
"Velocity trace",
"scalar-field",
region=12,

),
S.Control_Port(

"Boundary control (left)",
"U_L",
"Velocity trace",
"Y_L",
"Normal force",
"scalar-field",
region=13,
position="flow",

(continues on next page)

16 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

),
]

Add them to the dphs
for ctrl_port in control_ports:

wave.add_control_port(ctrl_port)

The choice for the finite element families is often the first difficulty of a simulation. Indeed, it can result in a failing time
scheme, or a very instable solution. A key-point to take a first decision is to remember which field needs regularity (in
the 𝐿2-sense) in the Dirac structure. In our case, the 𝑝-type variables should be at least𝐻1(Ω), as can be inferred from
(2.2). Hence, a first choice for the 𝑝-type variables is to take continuous Galerkin finite elements of order 𝑘. Since the
time derivative of 𝑞 will be, more or less, a gradient of a 𝑝-type variable, it will be a discontinuous Galerkin of order
𝑘 − 1 approximation. Finally, at least one trace of these variables, either the control, or the observation, is at most a
discontinuous Galerkin of order 𝑘 − 1 approximation. Hence the following choices, with 𝑘 = 2.

Define the Finite Elements Method of each port
FEMs = [

S.FEM(states[0].get_name(), 1, "DG"),
S.FEM(states[1].get_name(), 2, "CG"),
S.FEM(control_ports[0].get_name(), 1, "DG"),
S.FEM(control_ports[1].get_name(), 1, "DG"),
S.FEM(control_ports[2].get_name(), 1, "DG"),
S.FEM(control_ports[3].get_name(), 1, "DG"),

]

Add them to the dphs
for FEM in FEMs:

wave.add_FEM(FEM)

We can assume anisotropy and heterogeneity in our model by defining the parameters as follows. It has to be kept in
mind that a parameter is always linked to a port (i.e., to a pair flow-effort). In particular, a parameter linked to a port
that is a vector-field, should be a tensor-field.

Define physical parameters
parameters = [

S.Parameter("T", "Young's modulus", "tensor-field", "[[5+x,x*y],[x*y,2+y]]", "q"),
S.Parameter("rho", "Mass density", "scalar-field", "3-x", "p"),

]

Add them to the dphs
for parameter in parameters:

wave.add_parameter(parameter)

It is time to define the bricks of our model, i.e. the block matrices of our discretization, providing the weak forms given
in (2.3), (2.4), and (2.5).

This is probably the most difficult part of the process, and care must be taken. Remember that the syntax is the Generic
Weak-Form Language (GWFL), for which an on-line documentation exists on the GetFEM site.

For the block matrices appearing against time derivative of a variable, it is crucial not to forget the keyword dt=True.

Define the pHs via `Brick` == non-zero block matrices == variational terms
bricks = [

Define the Dirac structure
(continues on next page)

2.3. Examples 17

https://getfem.org/userdoc/gasm_high.html?highlight=gwfl

SCRIMP, Release 1.1

(continued from previous page)

Define the mass matrices from the left-hand side: the `flow` part of the Dirac␣
→˓structure

S.Brick("M_q", "q.Test_q", [1], dt=True, position="flow"),
S.Brick("M_p", "p*Test_p", [1], dt=True, position="flow"),
S.Brick("M_Y_B", "Y_B*Test_Y_B", [10], position="flow"),
S.Brick("M_Y_R", "Y_R*Test_Y_R", [11], position="flow"),
S.Brick("M_Y_T", "Y_T*Test_Y_T", [12], position="flow"),
The Dirichlet term is applied via Lagrange multiplier == the colocated output
S.Brick("M_Y_L", "U_L*Test_Y_L", [13], position="flow"),
Define the matrices from the right-hand side: the `effort` part of the Dirac␣

→˓structure
S.Brick("D", "Grad(e_p).Test_q", [1], position="effort"),
S.Brick("-D^T", "-e_q.Grad(Test_p)", [1], position="effort"),
S.Brick("B_B", "U_B*Test_p", [10], position="effort"),
S.Brick("B_R", "U_R*Test_p", [11], position="effort"),
S.Brick("B_T", "U_T*Test_p", [12], position="effort"),
The Dirichlet term is applied via Lagrange multiplier == the colocated output
S.Brick("B_L", "Y_L*Test_p", [13], position="effort"),
S.Brick("C_B", "-e_p*Test_Y_B", [10], position="effort"),
S.Brick("C_R", "-e_p*Test_Y_R", [11], position="effort"),
S.Brick("C_T", "-e_p*Test_Y_T", [12], position="effort"),
S.Brick("C_L", "-e_p*Test_Y_L", [13], position="effort"),
Define the constitutive relations
Hooke's law under implicit form `- M_e_q e_q + CR_q q = 0`
S.Brick("-M_e_q", "-e_q.Test_e_q", [1]),
S.Brick("CR_q", "q.T.Test_e_q", [1]),
Linear momentum definition under implicit form `- M_e_p e_p + CR_p p = 0`
S.Brick("-M_e_p", "-e_p*Test_e_p", [1]),
S.Brick("CR_p", "p/rho*Test_e_p", [1]),

]

Add all these `Bricks` to the dphs
for brick in bricks:

wave.add_brick(brick)

The last step is to initialize the dphs, by providing the control functions and the initial values for 𝑞 and 𝑝 (i.e., the
variables that are derivated in time in the model).

Initialize the problem
The controls expression, ordered as the control_ports
t_f = 5.0
expressions = ["0.", "0.", "0.", f"0.1*sin(4.*t)*sin(4*pi*y)*exp(-10.*pow((0.5*{t_f}-t),
→˓2))"]

Add each expression to its control_port
for control_port, expression in zip(control_ports, expressions):

Set the control functions: it automatically constructs the related `Brick`s such␣
→˓that `- M_u u + f(t) = 0`

wave.set_control(control_port.get_name(), expression)

Set the initial data
q_0 = "[0., 0.]"

(continues on next page)

18 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

wave.set_initial_value("q", q_0)
p_0 = "3**(-20*((x-0.5)*(x-0.5)+(y-0.5)*(y-0.5)))"
wave.set_initial_value("p", p_0)

It remains to solve!

Solve in time
Define the time scheme ("cn" is Crank-Nicolson)
wave.set_time_scheme(ts_type="cn",

t_f=t_f,
dt_save=0.01,
)

Solve
wave.solve()

Now we can set the Hamiltonian and plot it.

Post-processing
Set Hamiltonian's name
wave.hamiltonian.set_name("Mechanical energy")
Define each Hamiltonian Term
terms = [

S.Term("Potential energy", "0.5*q.T.q", [1]),
S.Term("Kinetic energy", "0.5*p*p/rho", [1]),

]
Add them to the Hamiltonian
for term in terms:

wave.hamiltonian.add_term(term)

Plot the Hamiltonian and save the output
wave.plot_Hamiltonian(save_figure=True, filename="Hamiltonian_Wave_2D_Conservative.png")

2.3. Examples 19

SCRIMP, Release 1.1

Adding Damping to the dphs

• file: examples/wave_dissipative.py

• authors: Ghislain Haine

• date: 06 aug. 2024

• brief: 2D dissipative wave equations

examples.wave_dissipative.wave_eq()

A structure-preserving discretization of the wave equation with mixed boundary control

Formulation DAE (energy/co-energy), Grad-Grad, Mixed boundary condition on the Rectangle Damped case.

The remining part of the notebook is focused on the way to deal with dissipativity, hence using an algebraic port.
Let us come back to the continuous system. Adding a (fluid) damping consists in an additive term in Newton second
law, which is proportional to the velocity (in the linear case). More precisely, denoting 𝜈 ≥ 0 the viscous parameter,
one has:

𝜌(𝑥)𝜕2𝑡𝑡𝑤(𝑡, 𝑥)− div (𝑇 (𝑥) · grad (𝑤(𝑡, 𝑥))) + 𝜈(𝑥)𝜕𝑡𝑤(𝑡, 𝑥) = 0.

Using the framework of port-Hamiltonian system, this rewrites:(︂
𝜕𝑡𝛼𝑞

𝜕𝑡𝛼𝑝

)︂
=

[︂
0 grad
div 0

]︂(︂
𝑒𝑞
𝑒𝑝

)︂
+

(︂
0

−𝜈𝑒𝑝

)︂
.

One could include −𝜈 inside the matrix of operators, this is the so-called 𝐽 − 𝑅 framework. However, it does not
exhibit the underlying Dirac structure, as it hides the resistive port. Let us introduce this hidden port, by denoting 𝑓𝑟

20 Chapter 2. User’s guide

SCRIMP, Release 1.1

the flow and 𝑒𝑟 the effort, as follows: ⎛⎝𝜕𝑡𝛼𝑞

𝜕𝑡𝛼𝑝

𝑓𝑟

⎞⎠ =

⎡⎣ 0 grad 0
div 0 −𝐼
0 𝐼⊤ 0

⎤⎦⎛⎝𝑒𝑞𝑒𝑝
𝑒𝑟

⎞⎠ , (2.6)

and supplemented by the resistive constitutive relation 𝑒𝑟 = 𝜈𝑓𝑟.

Of course, at the discrete level, this will increase the number of degrees of freedom, as two extra variables have to be
discretized. Nevertheless, in more complicated situations (e.g. dealing with non-linearities), this is the price to pay to
recover a correct discrete power balance.

The power balance satisfied by the Hamiltonian is then

d

d𝑡
ℋ(𝑡) = −

∫︁
Ω

𝜈(𝑥)𝑓2𝑟 (𝑡, 𝑥)⏟ ⏞
dissipated power

+ ⟨𝑦𝑁 (𝑡, ·), 𝑢𝑁 (𝑡, ·)⟩Γ𝑁⏟ ⏞
power flowing through Γ𝑁

+ ⟨𝑢𝐷(𝑡, ·), 𝑦𝐷(𝑡, ·)⟩Γ𝐷⏟ ⏞
power flowing through Γ𝐷

,

Another simulation

Let us start a new simulation with damping.

Define a new dphs
wave_diss = S.DPHS("real")

Set the domain (using the built-in geometry `Rectangle`)
Labels: Omega = 1, Gamma_Bottom = 10, Gamma_Right = 11, Gamma_Top = 12, Gamma_Left = 13
rectangle = S.Domain("Rectangle", {"L": 2.0, "l": 1.0, "h": 0.1})

On the rectangle domain
wave_diss.set_domain(rectangle)

Define the variables
states = [

S.State("q", "Strain", "vector-field"),
S.State("p", "Linear momentum", "scalar-field"),

]
costates = [

S.CoState("e_q", "Stress", states[0]),
S.CoState("e_p", "Velocity", states[1]),

]

Add them to the dphs
for (state,costate) in zip(states,costates):

wave_diss.add_state(state)
wave_diss.add_costate(costate)

Define the control ports
control_ports = [

S.Control_Port(
"Boundary control (bottom)",
"U_B",
"Normal force",
"Y_B",

(continues on next page)

2.3. Examples 21

SCRIMP, Release 1.1

(continued from previous page)

"Velocity trace",
"scalar-field",
region=10,

),
S.Control_Port(

"Boundary control (right)",
"U_R",
"Normal force",
"Y_R",
"Velocity trace",
"scalar-field",
region=11,

),
S.Control_Port(

"Boundary control (top)",
"U_T",
"Normal force",
"Y_T",
"Velocity trace",
"scalar-field",
region=12,

),
S.Control_Port(

"Boundary control (left)",
"U_L",
"Velocity trace",
"Y_L",
"Normal force",
"scalar-field",
region=13,
position="flow",

),
]

Add them to the dphs
for ctrl_port in control_ports:

wave_diss.add_control_port(ctrl_port)

The additional port is defined, added to the system wave_diss and a FEM is attached to it. Remark that we use the
previously defined objects, i.e. we only append the FEM of the resistive port to the list of previously defined FEM objects.
We choose continuous Galerkin of order 2, as the resistive effort is of 𝑝-type.

Define a dissipative port
port_diss = S.Port("Damping", "f_r", "e_r", "scalar-field")

Add it to the dphs
wave_diss.add_port(port_diss)

Define the Finite Elements Method of each port
FEMs = [

S.FEM(states[0].get_name(), 1, "DG"),
S.FEM(states[1].get_name(), 2, "CG"),

(continues on next page)

22 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

S.FEM(control_ports[0].get_name(), 1, "DG"),
S.FEM(control_ports[1].get_name(), 1, "DG"),
S.FEM(control_ports[2].get_name(), 1, "DG"),
S.FEM(control_ports[3].get_name(), 1, "DG"),
S.FEM("Damping", 2, "CG"),

]

Add all of them to the dphs
for FEM in FEMs:

wave_diss.add_FEM(FEM)

The parameter 𝜈 is obviously linked to the Damping port. It can be heterogeneous, as for the other parameters.

Define physical parameters
parameters = [

S.Parameter("T", "Young's modulus", "tensor-field", "[[5+x,x*y],[x*y,2+y]]", "q"),
S.Parameter("rho", "Mass density", "scalar-field", "3-x", "p"),
S.Parameter("nu", "viscosity", "scalar-field", "0.5*(2.0-x)", "Damping"),

]

Add them to the dphs
for parameter in parameters:

wave_diss.add_parameter(parameter)

Looking at (2.6), only 3 non-zero block matrices have to be added to the list of the already constructed bricks, for the
Dirac structure part. And finally, 2 bricks are needed to discretize the resistive constitutive relation.

Define the pHs via `Brick` == non-zero block matrices == variational terms
bricks = [

Define the Dirac structure
Define the mass matrices from the left-hand side: the `flow` part of the Dirac␣

→˓structure
S.Brick("M_q", "q.Test_q", [1], dt=True, position="flow"),
S.Brick("M_p", "p*Test_p", [1], dt=True, position="flow"),
S.Brick("M_Y_B", "Y_B*Test_Y_B", [10], position="flow"),
S.Brick("M_Y_R", "Y_R*Test_Y_R", [11], position="flow"),
S.Brick("M_Y_T", "Y_T*Test_Y_T", [12], position="flow"),
Mass matrix
S.Brick("M_r", "f_r*Test_f_r", [1], position="flow"),
The Dirichlet term is applied via Lagrange multiplier == the colocated output
S.Brick("M_Y_L", "U_L*Test_Y_L", [13], position="flow"),
Define the matrices from the right-hand side: the `effort` part of the Dirac␣

→˓structure
S.Brick("D", "Grad(e_p).Test_q", [1], position="effort"),
S.Brick("-D^T", "-e_q.Grad(Test_p)", [1], position="effort"),
S.Brick("B_B", "U_B*Test_p", [10], position="effort"),
S.Brick("B_R", "U_R*Test_p", [11], position="effort"),
S.Brick("B_T", "U_T*Test_p", [12], position="effort"),
The "Identity" operator
S.Brick("I_r", "e_r*Test_p", [1], position="effort"),
Minus its transpose
S.Brick("-I_r^T", "-e_p*Test_f_r", [1], position="effort"),

(continues on next page)

2.3. Examples 23

SCRIMP, Release 1.1

(continued from previous page)

The Dirichlet term is applied via Lagrange multiplier == the colocated output
S.Brick("B_L", "Y_L*Test_p", [13], position="effort"),
S.Brick("C_B", "-e_p*Test_Y_B", [10], position="effort"),
S.Brick("C_R", "-e_p*Test_Y_R", [11], position="effort"),
S.Brick("C_T", "-e_p*Test_Y_T", [12], position="effort"),
S.Brick("C_L", "-e_p*Test_Y_L", [13], position="effort"),
Define the constitutive relations
Hooke's law under implicit form `- M_e_q e_q + CR_q q = 0`
S.Brick("-M_e_q", "-e_q.Test_e_q", [1]),
S.Brick("CR_q", "q.T.Test_e_q", [1]),
Linear momentum definition under implicit form `- M_e_p e_p + CR_p p = 0`
S.Brick("-M_e_p", "-e_p*Test_e_p", [1]),
S.Brick("CR_p", "p/rho*Test_e_p", [1]),
Constitutive relation: linear viscous fluid damping `- M_e_r e_r + CR_r f_r = 0`
S.Brick("-M_e_r", "-e_r*Test_e_r", [1]),
S.Brick("CR_r", "nu*f_r*Test_e_r", [1]),

]

Again, we use the previsouly defined Brick objects, thus, the whole system is constructed by adding all the bricks.

Add all these `Bricks` to the dphs
for brick in bricks:

wave_diss.add_brick(brick)

The initialization and solve steps are identical to the previous conservative case.

Initialize the problem
The controls expression, ordered as the control_ports
t_f = 5.
expressions = ["0.", "0.", "0.", f"0.1*sin(4.*t)*sin(4*pi*y)*exp(-10.*pow((0.5*{t_f}-t),
→˓2))"]

Add each expression to its control_port
for control_port, expression in zip(control_ports, expressions):

Set the control functions: it automatically constructs the related `Brick`s such␣
→˓that `- M_u u + f(t) = 0`

wave_diss.set_control(control_port.get_name(), expression)

Set the initial data
q_0 = "[0., 0.]"
wave_diss.set_initial_value("q", q_0)
p_0 = "3**(-20*((x-0.5)*(x-0.5)+(y-0.5)*(y-0.5)))"
wave_diss.set_initial_value("p", p_0)

Solve in time
Define the time scheme
wave_diss.set_time_scheme(ts_type="cn",

t_f=t_f,
dt_save=0.01,
)

Solve
wave_diss.solve()

24 Chapter 2. User’s guide

SCRIMP, Release 1.1

Now one can define and plot the Hamiltonian.

Post-processing
Set Hamiltonian's name
wave_diss.hamiltonian.set_name("Mechanical energy")

Define each Hamiltonian Term (needed to overwrite the previously computed solution)
terms = [

S.Term("Potential energy", "0.5*q.T.q", [1]),
S.Term("Kinetic energy", "0.5*p*p/rho", [1]),

]

Add them to the Hamiltonian
for term in terms:

wave_diss.hamiltonian.add_term(term)

Plot the Hamiltonian and save the output
wave_diss.plot_Hamiltonian(save_figure=True, filename="Hamiltonian_Wave_2D_Dissipative.
→˓png")

2.3. Examples 25

SCRIMP, Release 1.1

2.3.2 The heat equation

• file: examples/heat.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 22 nov. 2022

• brief: 2D heat equation with Lyapunov Hamiltonian

examples.heat.heat_eq()

A structure-preserving discretization of the heat equation with mixed boundary control

Formulation with substitution of the co-state, Lyapunov L^2 functional, Div-Div, Mixed boundary condition on
the Rectangle (including impedance-like absorbing boundary condition).

Setting

This example is the first simple case of intrinsically port-Hamiltonian Differential Algebraic Equation (known as pH-
DAE).

The so-called heat equation is driven by the first law of thermodynamics.

Let Ω = (0, 2)× (0, 1) be a bounded open connected set, with mass density 𝜌(𝑥), for all 𝑥 ∈ Ω, and 𝑛 be the outward
unit normal at the boundary 𝜕Ω. We assume that:

• The domain Ω does not change over time: i.e. we work at constant volume in a solid

• No chemical reaction is to be found in the domain

• Dulong-Petit’s model: internal energy is proportional to temperature

Let us denotes:

• 𝑢 the internal energy density

• J𝑄 the heat flux

• 𝑇 the local temperature

• 𝐶𝑉 :=
(︀
𝑑𝑢
𝑑𝑇

)︀
𝑉

the isochoric heat capacity

The first law of thermodynamics, stating that in an isolated system, the energy is preserved, reads:

𝜌(𝑥)𝜕𝑡𝑢(𝑡, 𝑥) = −div (𝐽𝑄(𝑡, 𝑥)) , ∀𝑡 ≥ 0, 𝑥 ∈ Ω.

Under Dulong-Petit’s model, one has 𝑢 = 𝐶𝑉 𝑇 , which leads to

𝜌(𝑥)𝐶𝑉 (𝑥)𝜕𝑡𝑇 (𝑡, 𝑥) = −div (𝐽𝑄(𝑡, 𝑥)) , ∀𝑡 ≥ 0, 𝑥 ∈ Ω.

As constitutive relation, the classical Fourier’s law is considered:

𝐽𝑄(𝑡, 𝑥) = −𝜆(𝑥) · grad (𝑇 (𝑡, 𝑥)) , ∀𝑡 ≥ 0, 𝑥 ∈ Ω,

where 𝜆 is the tensor-valued heat conductivity of the medium.

We assume furthermore that one wants to control the temperature 𝑇 = 𝑢𝐷 at the lower, right and upper part of the
boundary, denoted Γ𝐷 (a Dirichlet boundary condition), while the inward heat flux −𝐽𝑄 · 𝑛 = 𝑢𝑁 will be prescribed
at the left edge, denoted Γ𝑁 (a Neumann boundary condition). Thus, the observations are 𝑦𝐷 = −𝐽𝑄 · 𝑛 and 𝑦𝑁 = 𝑇
respectively.

26 Chapter 2. User’s guide

SCRIMP, Release 1.1

Port-Hamiltonian framework

Let us choose as Hamiltonian the usual quadratic form for parabolic equation

ℋ(𝑇 (𝑡, 𝑥)) :=
1

2

∫︁
Ω

𝜌(𝑥)𝐶𝑣(𝑥)𝑇 2(𝑡, 𝑥)d𝑥.

Computing the variational derivative with respect to the weigthed 𝐿2-inner product (𝜑, 𝜓)Ω :=∫︀
Ω
𝜌(𝑥)𝐶𝑉 (𝑥)𝜑(𝑥)𝜓(𝑥)d𝑥 leads to a co-state variable 𝑒𝑇 = 𝑇 . Hence, the first law of thermodynamics may

be written as (︂
𝜌𝐶𝑉 𝑇
⋆

)︂
=

[︂
0 −div
⋆ 0

]︂(︂
𝑇
𝐽𝑄

)︂
.

As we want a formally skew-symmetric 𝐽 operator, it has to be completed with −grad, then(︂
𝜌𝐶𝑉 𝑇
𝑓𝑄

)︂
=

[︂
0 −div

−grad 0

]︂(︂
𝑇
𝐽𝑄

)︂
,

and Fourier’s law provides the constitutive relation 𝐽𝑄 = 𝜆𝑓𝑄 to close the system.

Remark: 𝜌𝐶𝑉 appears against the state variable as the weight of the 𝐿2-inner product, it should not be ommited in the
mass matrix at the discrete level.

The power balance satisfied by the Hamiltonian is
d

d𝑡
ℋ(𝑡) = −

∫︁
Ω

𝜆‖𝑓𝑄(𝑡, 𝑥)‖2d𝑥⏟ ⏞
dissipated power

+ ⟨𝑢𝐷(𝑡, ·), 𝑦𝐷(𝑡, ·)⟩Γ𝐷⏟ ⏞
power flowing through Γ𝐷

+ ⟨𝑦𝑁 (𝑡, ·), 𝑢𝑁 (𝑡, ·)⟩Γ𝑁⏟ ⏞
power flowing through Γ𝑁

,

where ⟨·, ·⟩Γ is a boundary duality bracket 𝐻 1
2 , 𝐻− 1

2 at the boundary Γ.

Structure-preserving discretization

Let 𝜙𝑇 and 𝜙𝑄 be smooth test functions on Ω, and 𝜓𝑁 and 𝜓𝐷 be smooth test functions on Γ𝑁 and Γ𝐷 respectively.
One can write the weak formulation of the Dirac Structure as follows⎧⎪⎪⎨⎪⎪⎩

∫︀
Ω
𝜌(𝑥)𝐶𝑉 (𝑥)𝜕𝑡𝑇 (𝑡, 𝑥)𝜙𝑇 (𝑥)d𝑥 = −

∫︀
Ω
div (𝐽𝑄(𝑡, 𝑥))𝜙𝑇 (𝑥)d𝑥,∫︀

Ω
𝑓𝑄(𝑡, 𝑥) · 𝜙𝑄(𝑥)d𝑥 = −

∫︀
Ω
grad (𝑇 (𝑡, 𝑥)) · 𝜙𝑄(𝑥)d𝑥,

⟨𝑦𝐷, 𝜓𝐷⟩Γ𝐷
= ⟨−𝐽𝑄 · 𝑛, 𝜓𝐷⟩Γ𝐷

,

⟨𝑢𝑁 , 𝜓𝑁 ⟩Γ𝑁
= ⟨−𝐽𝑄 · 𝑛, 𝜓𝑁 ⟩Γ𝑁

.

Integrating by parts the second line make the control 𝑢𝑁 and the observation 𝑦𝐷 appear∫︁
Ω

𝑓𝑄(𝑡, 𝑥) · 𝜙𝑄(𝑥)d𝑥 =

∫︁
Ω

𝑇 (𝑡, 𝑥)div (𝜙𝑄(𝑥)) d𝑥− ⟨𝑢𝐷, 𝜙𝑄 · 𝑛⟩Γ𝐷
− ⟨𝑦𝑁 , 𝜙𝑄 · 𝑛⟩Γ𝑁

.

Now, let (𝜙𝑖
𝑇)1≤𝑖≤𝑁𝑇

⊂ 𝐿2(Ω) and (𝜙𝑘
𝑄)1≤𝑘≤𝑁𝑄

⊂ 𝐻div(Ω) be two finite families of approximations for the 𝑇 -type
port and the 𝑄-type port respectively, typically discontinuous and continuous Galerkin finite elements respectively.
Denote also (𝜓𝑚

𝑁)1≤𝑚𝑁≤𝑁𝑁
⊂ 𝐻

1
2 (Γ𝑁) and (𝜓𝑚

𝐷)1≤𝑚𝑁≤𝑁𝐷
⊂ 𝐻

1
2 (Γ𝐷). In particular, the latter choices imply that

the duality brackets at the boundary reduce to simple 𝐿2 scalar products.

Writing the discrete weak formulation with those families, one has for all 1 ≤ 𝑖 ≤ 𝑁𝑇 , all 1 ≤ 𝑘 ≤ 𝑁𝑄, all
1 ≤ 𝑚𝑁 ≤ 𝑁𝑁 and all 1 ≤ 𝑚𝐷 ≤ 𝑁𝐷⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀𝑁𝑇

𝑗=1

∫︀
Ω
𝜙𝑗
𝑇 (𝑥)𝜌(𝑥)𝐶𝑉 (𝑥)𝜙

𝑖
𝑇 (𝑥)d𝑥

d
d𝑡𝑇

𝑗(𝑡) = −
∑︀𝑁𝑄

ℓ=1

∫︀
Ω
div

(︀
𝜙ℓ
𝑄(𝑥)

)︀
𝜙𝑖
𝑇 (𝑥)d𝑥𝐽

ℓ
𝑄(𝑡),∑︀𝑁𝑄

ℓ=1

∫︀
Ω
𝜙ℓ
𝑄(𝑥)𝜙

𝑘
𝑄(𝑥)d𝑥 𝑓

ℓ
𝑄(𝑡) =

∑︀𝑁𝑄

𝑗=1

∫︀
Ω
𝜙𝑗
𝑇 (𝑥)div

(︀
𝜙𝑘
𝑄(𝑥)

)︀
d𝑥𝑇 𝑗(𝑡)

−
∑︀𝑁𝐷

𝑛𝐷=1

∫︀
Γ𝐷

𝜙𝑘
𝑄(𝑠) · 𝑛(𝑠)𝜓

𝑛𝐷

𝐷 (𝑠)d𝑠 𝑢𝑛𝐷

𝐷 (𝑡)

−
∑︀𝑁𝑁

𝑛𝑁=1

∫︀
Γ𝑁

𝜙𝑘
𝑄(𝑠) · 𝑛(𝑠)𝜓

𝑛𝑁

𝑁 (𝑠)d𝑠 𝑦𝑛𝑁

𝑁 (𝑡),∑︀𝑁𝐷

𝑛𝐷=1 ⟨𝜓
𝑛𝐷

𝐷 , 𝜓𝑚𝐷

𝐷 ⟩Γ𝐷
𝑦𝑛𝐷

𝐷 (𝑡) = −
∑︀𝑁𝑝

ℓ=1

∫︀
Γ𝐷

𝜙ℓ
𝑄(𝑠) · 𝑛(𝑠)𝜓

𝑚𝐷

𝐷 (𝑠)d𝑠 𝐽ℓ
𝑄(𝑡),∑︀𝑁𝑁

𝑛𝑁=1 ⟨𝜓
𝑛𝑁

𝑁 , 𝜓𝑚𝑁

𝑁 ⟩Γ𝑁
𝑢𝑛𝑁

𝑁 (𝑡) = −
∑︀𝑁𝑝

ℓ=1

∫︀
Γ𝑁

𝜙ℓ
𝑄(𝑠) · 𝑛(𝑠)𝜓

𝑚𝑁

𝑁 (𝑠)d𝑠 𝐽ℓ
𝑄(𝑡),

2.3. Examples 27

SCRIMP, Release 1.1

which rewrites in matrix form⎡⎢⎢⎣
𝑀𝑇 0 0 0
0 𝑀𝑄 0 0
0 0 𝑀𝐷 0
0 0 0 𝑀𝑁

⎤⎥⎥⎦
⏟ ⏞

=𝑀

⎛⎜⎜⎝
d
d𝑡𝑇 (𝑡)
𝑓𝑄(𝑡)

−𝑦𝐷(𝑡)
𝑢𝑁 (𝑡)

⎞⎟⎟⎠ =

⎡⎢⎢⎣
0 𝐷 0 0

−𝐷⊤ 0 𝐵𝐷 −𝐵𝑇
𝑁

0 −𝐵⊤
𝐷 0 0

0 𝐵𝑁 0 0

⎤⎥⎥⎦
⏟ ⏞

=𝐽

⎛⎜⎜⎝
𝑇 (𝑡)
𝐽𝑄(𝑡)

𝑢𝐷(𝑡)
−𝑦𝑁 (𝑡)

⎞⎟⎟⎠ ,

where ⋆(𝑡) :=
(︀
⋆1(𝑡) · · · ⋆𝑁⋆

)︀⊤ and

(𝑀𝑇)𝑖𝑗 :=

∫︁
Ω

𝜙𝑗
𝑇 (𝑥)𝜙

𝑖
𝑇 (𝑥)d𝑥, (𝑀𝑄)𝑘ℓ :=

∫︁
Ω

𝜙ℓ
𝑄(𝑥) · 𝜙𝑘

𝑄(𝑥)d𝑥,

(𝑀𝐷)𝑚𝐷𝑛𝐷
:=

∫︁
Γ𝐷

𝜓𝑛𝐷

𝐷 (𝑠)𝜓𝑚𝐷

𝐷 (𝑠)d𝑠, (𝑀𝑁)𝑚𝑁𝑛𝑁
:=

∫︁
Γ𝑁

𝜓𝑛𝑁

𝑁 (𝑠)𝜓𝑚𝑁

𝑁 (𝑠)d𝑠,

(𝐷)𝑖ℓ := −
∫︁
Ω

div
(︀
𝜙ℓ
𝑄(𝑥)

)︀
· 𝜙𝑖

𝑇 (𝑥)d𝑥

(𝐵𝐷)𝑛𝐷𝑘 := −
∫︁
Γ𝐷

𝜙𝑘
𝑄(𝑠) · 𝑛(𝑠)𝜓

𝑛𝐷

𝐷 (𝑠)d𝑠, (𝐵𝑁)𝑚𝑁 ℓ := −
∫︁
Γ𝑁

𝜙ℓ
𝑄(𝑠) · 𝑛(𝑠)𝜓

𝑚𝑁

𝑁 (𝑠)d𝑠, ,

Now one can approximate the constitutive relation∫︁
Ω

𝐽𝑄(𝑡, 𝑥) · 𝜙𝑄(𝑥)d𝑥 =

∫︁
Ω

𝑓𝑄(𝑡, 𝑥) · 𝜆(𝑥) · 𝜙𝑄(𝑥)d𝑥,

from which one can deduce the matrix form of the discrete weak formulation of the constitutive relation

𝑀𝑄𝐽𝑄(𝑡) = Λ𝑓𝑄(𝑡),

where

(Λ)𝑘ℓ :=

∫︁
Ω

𝜙ℓ
𝑄(𝑥) · 𝜆(𝑥) · 𝜙𝑘

𝑄(𝑥)d𝑥.

Finally, the discrete Hamiltonian ℋ𝑑 is defined as the evaluation of ℋ on the approximation of the state variable

ℋ(𝑡) := ℋ(𝑇 𝑑(𝑡)) =
1

2
𝑇 (𝑡)⊤𝑀𝑇𝑇 (𝑡).

The discrete power balance is then easily deduced from the above matrix formulations, thanks to the symmetry of𝑀
and the skew-symmetry of 𝐽

d

d𝑡
ℋ𝑑(𝑡) = −𝑓𝑄(𝑡)⊤Λ𝑓𝑄(𝑡)⊤ + 𝑢𝐷(𝑡)⊤𝑀𝐷𝑦𝐷(𝑡) + 𝑦𝑁 (𝑡)⊤𝑀𝑁𝑢𝑁 (𝑡).

Simulation

As usual, we start by importing the SCRIMP package. Then we define the Distributed Port-Hamiltonian System and
attach a (built-in) domain to it.

Import scrimp
import scrimp as S

Init the distributed port-Hamiltonian system
heat = S.DPHS("real")

Set the domain (using the built-in geometry `Rectangle`)
Omega = 1, Gamma_Bottom = 10, Gamma_Right = 11, Gamma_Top = 12, Gamma_Left = 13
heat.set_domain(S.Domain("Rectangle", {"L": 2.0, "l": 1.0, "h": 0.1}))

28 Chapter 2. User’s guide

SCRIMP, Release 1.1

The next step is to define the state and its co-state. Care must be taken here: both are the temperature 𝑇 , since the
parameter 𝜌𝐶𝑉 have been taken into account as a weight in the 𝐿2-inner product. Hence, one may save some com-
putational burden by using substituted=True which says to SCRIMP that the co-state is substituted into the state!
Only one variable is approximated and will be computed in the sequel.

However, note that one could define a state 𝑒 (namely the internal energy), and add Dulong-Petit’s law as a constitutive
relation 𝑒 = 𝐶𝑉 𝑇 as usual.

Define the variables and their discretizations and add them to the dphs
states = [

S.State("T", "Temperature", "scalar-field"),
]
costates = [

Substituted=True indicates that only one variable has to be discretized on this␣
→˓port

S.CoState("T", "Temperature", states[0], substituted=True)
]

Let us define the algebraic port.

ports = [
S.Port("Heat flux", "f_Q", "J_Q", "vector-field"),

]

And finally the control ports on each of the four boundary part.

control_ports = [
S.Control_Port(

"Boundary control (bottom)",
"U_B",
"Temperature",
"Y_B",
"- Normal heat flux",
"scalar-field",
region=10,
position="effort",

),
S.Control_Port(

"Boundary control (right)",
"U_R",
"Temperature",
"Y_R",
"- Normal heat flux",
"scalar-field",
region=11,
position="effort",

),
S.Control_Port(

"Boundary control (top)",
"U_T",
"Temperature",
"Y_T",
"- Normal heat flux",
"scalar-field",

(continues on next page)

2.3. Examples 29

SCRIMP, Release 1.1

(continued from previous page)

region=12,
position="effort",

),
S.Control_Port(

"Boundary control (left)",
"U_L",
"- Normal heat flux",
"Y_L",
"Temperature",
"scalar-field",
region=13,
position="flow",

),
]

Add all these objects to the DPHS.

for state in states:
heat.add_state(state)

for costate in costates:
heat.add_costate(costate)

for port in ports:
heat.add_port(port)

for ctrl_port in control_ports:
heat.add_control_port(ctrl_port)

Now, we must define the finite element families on each port. As stated in the beginning, only the :math:`varphi_Q`
family needs a stronger regularity. Let us choose continuous Galerkin approximation of order 2. Then, the divergence
of 𝜙𝑄 is easily approximated by discontinuous Galerkin of order 1. At the boundary, this latter regularity will then
occur, hence the choice of discontinuous Galerkin of order 1 as well.

FEMs = [
S.FEM(states[0].get_name(), 1, FEM="DG"),
S.FEM(ports[0].get_name(), 2, FEM="CG"),
S.FEM(control_ports[0].get_name(), 1, FEM="DG"),
S.FEM(control_ports[1].get_name(), 1, FEM="DG"),
S.FEM(control_ports[2].get_name(), 1, FEM="DG"),
S.FEM(control_ports[3].get_name(), 1, FEM="DG"),

]
for FEM in FEMs:

heat.add_FEM(FEM)

It is now time to define the parameters, namely 𝑟ℎ𝑜, 𝐶𝑉 and 𝜆. For the sake of simplicity, we assume that 𝜌 will take
𝐶𝑉 into account.

Define the physical parameters
parameters = [

S.Parameter("rho", "Mass density times heat capacity", "scalar-field", "3.", "T"),
S.Parameter(

"Lambda",
"Heat conductivity",
"tensor-field",
"[[1e-2,0.],[0.,1e-2]]",

(continues on next page)

30 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

"Heat flux",
),

]
Add them to the dphs
for parameter in parameters:

heat.add_parameter(parameter)

Now the non-zero block matrices of the Dirac structure can be defined using the Brick object, as well as the constitutive
relation, i.e. Fourier’s law.

Define the Dirac structure and the constitutive relations block matrices as `Brick`
bricks = [

Add the mass matrices from the left-hand side: the `flow` part of the Dirac␣
→˓structure

S.Brick("M_T", "T*rho*Test_T", [1], dt=True, position="flow"),
S.Brick("M_Q", "f_Q.Test_f_Q", [1], position="flow"),
S.Brick("M_Y_B", "Y_B*Test_Y_B", [10], position="flow"),
S.Brick("M_Y_R", "Y_R*Test_Y_R", [11], position="flow"),
S.Brick("M_Y_T", "Y_T*Test_Y_T", [12], position="flow"),
Normal trace is imposed by Lagrange multiplier on the left side == the collocated␣

→˓output
S.Brick("M_Y_L", "U_L*Test_Y_L", [13], position="flow"),
Add the matrices from the right-hand side: the `effort` part of the Dirac structure
S.Brick("D", "-Div(J_Q)*Test_T", [1], position="effort"),
S.Brick("-D^T", "T*Div(Test_f_Q)", [1], position="effort"),
S.Brick("B_B", "-U_B*Test_f_Q.Normal", [10], position="effort"),
S.Brick("B_R", "-U_R*Test_f_Q.Normal", [11], position="effort"),
S.Brick("B_T", "-U_T*Test_f_Q.Normal", [12], position="effort"),
Normal trace is imposed by Lagrange multiplier on the left side == the collocated␣

→˓output
S.Brick("B_L", "-Y_L*Test_f_Q.Normal", [13], position="effort"),
S.Brick("C_B", "J_Q.Normal*Test_Y_B", [10], position="effort"),
S.Brick("C_R", "J_Q.Normal*Test_Y_R", [11], position="effort"),
S.Brick("C_T", "J_Q.Normal*Test_Y_T", [12], position="effort"),
S.Brick("C_L", "J_Q.Normal*Test_Y_L", [13], position="effort"),
Define the constitutive relations as getfem `brick`
Fourier's law under implicit form - M_e_Q e_Q + CR_Q Q = 0
S.Brick("-M_J_Q", "-J_Q.Test_J_Q", [1]),
S.Brick("CR_Q", "f_Q.Lambda.Test_J_Q", [1]),

]
for brick in bricks:

heat.add_brick(brick)

As controls, we assume that the temperature is prescribed, while the inward heat flux is proportional to the temperature
(i.e. we consider an impedance-like absorbing boundary condition). This is easily achieved in SCRIMP by calling the
variable in the expression of the control to apply.

The initial temperature profile is compatible with these controls, and has a positive bump centered in the domain.

Initialize the problem
expressions = ["1.", "1.", "1.", "0.2*T"]

for control_port, expression in zip(control_ports, expressions):
(continues on next page)

2.3. Examples 31

SCRIMP, Release 1.1

(continued from previous page)

Set the control functions (automatic construction of bricks such that -M_u u +␣
→˓f(t) = 0)

heat.set_control(control_port.get_name(), expression)

Set the initial data
heat.set_initial_value("T", "1. + 2.*np.exp(-50*((x-1)*(x-1)+(y-0.5)*(y-0.5))**2)")

We can now solve our Differential Algebraic Equation (DAE) using, e.g., a Backward Differentiation Formula (BDF)
of order 4.

Solve in time
Define the time scheme ("bdf" is backward differentiation formula)
heat.set_time_scheme(t_f=5.,

ts_type="bdf",
ts_bdf_order=4,
dt=0.01,
)

Solve
heat.solve()

The Hamiltonian may be defined, computed and plot.

Post-processing
Set Hamiltonian name
heat.hamiltonian.set_name("Lyapunov formulation")
Define the term
terms = [

S.Term("L^2-norm", "0.5*T*rho*T", [1]),
]
Add them to the Hamiltonian
for term in terms:

heat.hamiltonian.add_term(term)

Plot the Hamiltonian
heat.plot_Hamiltonian(save_figure=True, filename="Hamiltonian_Heat_2D.png")

32 Chapter 2. User’s guide

SCRIMP, Release 1.1

2.3.3 Another wave equation

• file: examples/wave_coenergy.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 22 nov. 2022

• brief: wave equations in co-energy formulation, two sub-domains

examples.wave_coenergy.wave_coenergy_eq()

A structure-preserving discretization of the wave equation with boundary control

Formulation co-energy, Grad-Grad, output feedback law at the boundary, damping on a subdomain

Setting

The objective of this example is to show how sub-domains may be used, and how substitutions reduce the computational
burden: it assumes that this 2D wave example has already been studied.

2.3. Examples 33

https://g-haine.github.io/scrimp/examples/wave.html

SCRIMP, Release 1.1

Substitutions

The damped wave equation as a port-Hamiltonian system writes⎛⎝𝜕𝑡𝛼𝑞

𝜕𝑡𝛼𝑝

𝑓𝑟

⎞⎠ =

⎡⎣ 0 grad 0
div 0 −𝐼
0 𝐼⊤ 0

⎤⎦⎛⎝𝑒𝑞𝑒𝑝
𝑒𝑟

⎞⎠ ,

where 𝛼𝑞 denotes the strain, 𝛼𝑝 is the linear momentum, 𝑒𝑞 is the stress, 𝑒𝑝 is the velocity and (𝑓𝑟, 𝑒𝑟) is the dissipative
port.

This system must be close with constitutive relations, which are

𝑒𝑞 = 𝑇 · 𝛼𝑞, 𝑒𝑝 =
𝛼𝑝

𝜌
, 𝑒𝑟 = 𝜈𝑓𝑟,

where 𝑇 is the Young’s modulus, 𝜌 the mass density and 𝜈 the viscosity. Inverting these relations and substituting the
results in the port-Hamiltonian system leads to the co-energy formulation (or more generally co-state formulation)⎛⎝𝑇−1 · 𝜕𝑡𝑒𝑞

𝜌𝜕𝑡𝑒𝑝
𝜈−1𝑒𝑟

⎞⎠ =

⎡⎣ 0 grad 0
div 0 −𝐼
0 𝐼⊤ 0

⎤⎦⎛⎝𝑒𝑞𝑒𝑝
𝑒𝑟

⎞⎠ .

At the discrete level, this allows to reduce the number of degrees of freedom by two.

Remark: In the example, 𝜈 only acts on a sub-domain, i.e. it is theoretically null on the complementary, and thus is not
invertible! To be able to invert it, it is then mandatory to restrict the dissipative port to the sub-domain where 𝜈 > 0.

Simulation

Let us start quickly until the definition of the dissipative port.

Import scrimp
import scrimp as S

Init the distributed port-Hamiltonian system
wave = S.DPHS("real")

Set the domain (using the built-in geometry `Concentric`)
Labels: Disk = 1, Annulus = 2, Interface = 10, Boundary = 20
omega = S.Domain("Concentric", {"R": 1.0, "r": 0.6, "h": 0.1})

And add it to the dphs
wave.set_domain(omega)

Define the variables
states = [

S.State("q", "Stress", "vector-field"),
S.State("p", "Velocity", "scalar-field"),

]
Use of the `substituted=True` keyword to get the co-energy formulation
costates = [

S.CoState("e_q", "Stress", states[0], substituted=True),
S.CoState("e_p", "Velocity", states[1], substituted=True),

]

(continues on next page)

34 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

Add them to the dphs
for state in states:

wave.add_state(state)
for costate in costates:

wave.add_costate(costate)

In order to restrict the dissipative port to the internal disk, we use the region keyword.

Define the dissipative port, only on the subdomain labelled 1 = the internal disk
ports = [

S.Port("Damping", "e_r", "e_r", "scalar-field", substituted=True, region=1),
]

Add it to the dphs
for port in ports:

wave.add_port(port)

The control port is only at the external boundary, labelled by 20 in SCRIMP.

Define the control port
control_ports = [

S.Control_Port(
"Boundary control",
"U",
"Normal force",
"Y",
"Velocity trace",
"scalar-field",
region=20,

),
]

Add it to the dphs
for ctrl_port in control_ports:

wave.add_control_port(ctrl_port)

The sequel is as for the already seen examples.

Define the Finite Elements Method of each port
FEMs = [

S.FEM(states[0].get_name(), 1, "DG"),
S.FEM(states[1].get_name(), 2, "CG"),
S.FEM(ports[0].get_name(), 1, "DG"),
S.FEM(control_ports[0].get_name(), 1, "DG"),

]

Add them to the dphs
for FEM in FEMs:

wave.add_FEM(FEM)

Define physical parameters: care must be taken,
in the co-energy formulation, some parameters are
inverted in comparison to the classical formulation

(continues on next page)

2.3. Examples 35

SCRIMP, Release 1.1

(continued from previous page)

parameters = [
S.Parameter(

"Tinv",
"Young's modulus inverse",
"tensor-field",
"[[5+x,x*y],[x*y,2+y]]",
"q",

),
S.Parameter("rho", "Mass density", "scalar-field", "3-x", "p"),
S.Parameter(

"nu",
"Viscosity",
"scalar-field",
"10*(0.36-(x*x+y*y))",
ports[0].get_name(),

),
]

Add them to the dphs
for parameter in parameters:

wave.add_parameter(parameter)

Regarding the Brick objects, there is a major difference with the previous examples: here, we need to list all the sub-
domain labels for the wave equation, hence the [1,2]. On the other hand, the dissipation only occurs on the internal
disk, labelled 1, and thus the block matrices corresponding to the identity operators which implement the dissipation
must be restrict to [1].

Define the pHs via `Brick` == non-zero block matrices == variational terms
Since we use co-energy formulation, constitutive relations are already taken into
account in the mass matrices M_q and M_p
bricks = [

Define the Dirac structure
Define the mass matrices from the left-hand side: the `flow` part of the Dirac␣

→˓structure
S.Brick("M_q", "q.Tinv.Test_q", [1, 2], dt=True, position="flow"),
S.Brick("M_p", "p*rho*Test_p", [1, 2], dt=True, position="flow"),
S.Brick("M_r", "e_r/nu*Test_e_r", [1], position="flow"),
S.Brick("M_Y", "Y*Test_Y", [20], position="flow"),
Define the matrices from the right-hand side: the `effort` part of the Dirac␣

→˓structure
S.Brick("D", "Grad(p).Test_q", [1, 2], position="effort"),
S.Brick("-D^T", "-q.Grad(Test_p)", [1, 2], position="effort"),
S.Brick("I_r", "e_r*Test_p", [1], position="effort"),
S.Brick("B", "U*Test_p", [20], position="effort"),
S.Brick("-I_r^T", "-p*Test_e_r", [1], position="effort"),
S.Brick("-B^T", "-p*Test_Y", [20], position="effort"),
Define the constitutive relations
Already taken into account in the Dirac Structure!

]

Add all these `Bricks` to the dphs
for brick in bricks:

(continues on next page)

36 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

wave.add_brick(brick)

The remaining part of the code have already been explain in previous examples.

Initialize the problem
The controls expression
expressions = ["0.5*Y"]

Add each expression to its control_port
for control_port, expression in zip(control_ports, expressions):

Set the control functions (automatic construction of bricks such that -M_u u +␣
→˓f(t) = 0)

wave.set_control(control_port.get_name(), expression)

Set the initial data
wave.set_initial_value("q", "[0., 0.]")
wave.set_initial_value("p", "2.72**(-20*((x-0.5)*(x-0.5)+(y-0.5)*(y-0.5)))")

Solve in time
Define the time scheme ("cn" is Crank-Nicolson)
wave.set_time_scheme(ts_type="cn",

t_f=2.0,
dt_save=0.01,
)

Solve
wave.solve()

Post-processing
Set Hamiltonian's name
wave.hamiltonian.set_name("Mechanical energy")
Define each Hamiltonian Term
terms = [

S.Term("Potential energy", "0.5*q.Tinv.q", [1, 2]),
S.Term("Kinetic energy", "0.5*p*p*rho", [1, 2]),

]
Add them to the Hamiltonian
for term in terms:

wave.hamiltonian.add_term(term)

Plot the Hamiltonian and save the output
wave.plot_Hamiltonian(save_figure=True)

2.3. Examples 37

SCRIMP, Release 1.1

2.3.4 Heat wave coupling

• file: sandbox/heat_hw.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 15 dec. 2022

• brief: a 2D coupled heat-wave system

examples.heat_wave.heat_wave_eq(heat_region=1, wave_region=2)
A structure-preserving discretization of a coupled heat-wave equation

Co-energy formulations, heat: div-div, wave: grad-grad, gyrator interconnection On the Concentric built-in
geometry: 1: internal disk, 2: exterior annulus

Args:
heat_region (int): the label of the region where the heat equation lies wave_region (int): the label of the
region where the wave equation lies

38 Chapter 2. User’s guide

SCRIMP, Release 1.1

Setting

It is assumed that the 2D wave equation, the 2D wave equation in co-energy formulation and the 2D heat equation have
already been studied.

The objective of this example is to deal with interconnection in the sense of port-Hamiltonian systems.

We are interested in the coupled heat-wave system which can be formulated as follows: let Ω := Ω𝑊 ∪ Ω𝐻 be a
bounded domain in R2 such that Ω𝑊 ∩Ω𝐻 = ∅, we denote Γ𝐼 := 𝜕Ω𝑊 ∩𝜕Ω𝐻 the interface between the two domains,
and Γ𝑊 := 𝜕Ω𝑊 ∖ Γ𝐼 and Γ𝐻 := 𝜕Ω𝐻 ∖ Γ𝐼 . The system of equations reads⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡𝑇 (𝑡, 𝑥) = div (grad (𝑇 (𝑡, 𝑥))) , ∀𝑡 ≥ 0, 𝑥 ∈ Ω𝐻 ,
𝜕2𝑡𝑡𝑤(𝑡, 𝑥) = div (grad (𝑇 (𝑡, 𝑥))) , ∀𝑡 ≥ 0, 𝑥 ∈ Ω𝐻 ,

𝑇 (𝑡, 𝑠) = 0, ∀𝑡 ≥ 0, 𝑠 ∈ Γ𝐻 ,
𝑤(𝑡, 𝑠) = 0, ∀𝑡 ≥ 0, 𝑠 ∈ Γ𝑊 ,

together with the transmission conditions across the interface{︂
𝑇 (𝑡, 𝑠) = 𝜕𝑡𝑤(𝑡, 𝑠), ∀𝑡 ≥ 0, 𝑠 ∈ Γ𝐼 ,

𝜕𝑛𝐻
𝑇 (𝑡, 𝑠) = −𝜕𝑛𝑊

𝑤(𝑡, 𝑠), ∀𝑡 ≥ 0, 𝑠 ∈ Γ𝐼 ,

where 𝑛𝐻 is the outward normal to Ω𝐻 and 𝑛𝑊 is the outward normal to Ω𝑊 . Hence, 𝑛𝐻 = −𝑛𝑊 on Γ𝐼 .

Port-Hamiltonian framework

• The heat equation

The heat equation reads (︂
𝜕𝑡𝑇
𝑒𝑞

)︂
=

[︂
0 −div

−grad 0

]︂(︂
𝑇
𝑒𝑄

)︂
,

together with the boundary ports {︂
𝑢𝐼𝐻 = 𝑇, Γ𝐼 ,
𝑦𝐼𝐻 = 𝑒𝑄 · 𝑛𝐻 , Γ𝐼 ,

and {︂
𝑢𝐻 = 𝑇, Γ𝐻 ,
𝑦𝐻 = 𝑒𝑄 · 𝑛𝐻 , Γ𝐻 .

• The wave equation

The Dirichlet boundary condition has to be relaxed by 𝜕𝑡𝑤 = 0 to fit the port-Hamiltonian framework. Providing this
adaptation and the notation 𝑝 := 𝜕𝑡𝑤 and 𝑞 := grad (𝑤), the wave equation reads(︂

𝜕𝑡𝑞
𝜕𝑡𝑝

)︂
=

[︂
0 grad
div 0

]︂(︂
𝑞
𝑝

)︂
,

together with the boundary ports {︂
𝑢𝐼𝑊 = 𝑞 · 𝑛𝑊 , Γ𝐼 ,
𝑦𝐼𝑊 = 𝑝, Γ𝐼 ,

and {︂
𝑢𝑊 = 𝑞 · 𝑛𝑊 , Γ𝐻 ,
𝑦𝑊 = 𝑝, Γ𝐻 .

2.3. Examples 39

https://g-haine.github.io/scrimp/examples/wave.html
https://g-haine.github.io/scrimp/examples/wave_coenergy.html
https://g-haine.github.io/scrimp/examples/heat.html

SCRIMP, Release 1.1

• The interconnection

The transmission condition at the interface may be recast as a power-preserving interconnection. It can be either a
gyrator or a tranformer interconnection, depending on the chosen causality for each system. We the above choices,
we have a gyrator interconnection, indeed, one has

𝑢𝐼𝐻 = 𝑦𝐼𝑤, 𝑢𝐼𝑊 = 𝑦𝐼𝐻 .

Structure-preserving discretization

• The heat equation

We use the div-div formulation already presented in the 2D heat equation example, i.e. we obtain the following system⎡⎢⎢⎣
𝑀𝑇 0 0 0
0 𝑀𝑄 0 0
0 0 𝑀 𝐼

𝐻 0
0 0 0 𝑀𝐻

⎤⎥⎥⎦
⏟ ⏞

=𝑀

⎛⎜⎜⎝
d
d𝑡𝑇 (𝑡)
𝑒𝑄(𝑡)

−𝑦𝐼𝐻(𝑡)

−𝑦𝐻(𝑡)

⎞⎟⎟⎠ =

⎡⎢⎢⎣
0 𝐷 0 0

−𝐷⊤ 0 𝐵𝐼
𝐻 𝐵𝐻

0 −(𝐵𝐼
𝐻)⊤ 0 0

0 −(𝐵𝐻)⊤ 0 0

⎤⎥⎥⎦
⏟ ⏞

=𝐽

⎛⎜⎜⎝
𝑇 (𝑡)
𝑒𝑄(𝑡)

𝑢𝐼𝐻(𝑡)

𝑢𝐻(𝑡)

⎞⎟⎟⎠ ,

• The wave equation

We use the grad-grad formulation already presented in the 2D wave equation example, i.e. we obtain the following
system ⎡⎢⎢⎣

𝑀𝑞 0 0 0
0 𝑀𝑝 0 0
0 0 𝑀 𝐼

𝑊 0
0 0 0 𝑀𝑊

⎤⎥⎥⎦
⏟ ⏞

=𝑀

⎛⎜⎜⎝
d
d𝑡𝑞(𝑡)
d
d𝑡𝑝(𝑡)
−𝑦𝐼𝑊 (𝑡)

𝑢𝑊 (𝑡)

⎞⎟⎟⎠ =

⎡⎢⎢⎣
0 𝐷 0 0

−𝐷⊤ 0 𝐵𝐼
𝑊 −𝐵⊤

𝑊

0 −(𝐵𝐼
𝑊)⊤ 0 0

0 𝐵𝑊 0 0

⎤⎥⎥⎦
⏟ ⏞

=𝐽

⎛⎜⎜⎝
𝑞(𝑡)
𝑝(𝑡)
𝑢𝐼𝑊 (𝑡)

−𝑦𝑊 (𝑡)

⎞⎟⎟⎠ ,

• The transformer interconnection

This condition is easy to implement, and leads to

𝑀 𝐼
𝐻𝑢

𝐼
𝐻(𝑡) =𝑀 𝐼

𝑊 𝑦𝐼𝑊 (𝑡), 𝑀 𝐼
𝑊𝑢𝐼𝑊 (𝑡) =𝑀 𝐼

𝐻𝑦
𝐼
𝐻(𝑡).

Simulation

Let us start as usual, but using now the Concentric built-in geometry.

Import scrimp
import scrimp as S

Init the distributed port-Hamiltonian system
hw = S.DPHS("real")

Set the domain (using the built-in geometry `Concentric`)
Labels: Disk = 1, Annulus = 2, Interface = 10, Boundary = 20
omega = S.Domain("Concentric", {"R": 1.0, "r": 0.6, "h": 0.1})

And add it to the dphs
hw.set_domain(omega)

40 Chapter 2. User’s guide

https://g-haine.github.io/scrimp/examples/heat.html
https://g-haine.github.io/scrimp/examples/wave.html

SCRIMP, Release 1.1

It is important to remember here one of the objective of this example: to understand the region keyword.

For our study case, the heat equation will lie on a region heat_region, while the wave equation will lie on another
region wave_region. And this has to be stated when defining the states and co-states, and everytime an integral (either
the weak forms or the Hamiltonian terms) occurs.

Define the states and costates, needs the heat and wave region's labels
heat_region = 1
wave_region = 2
states = [

S.State("T", "Temperature", "scalar-field", region=heat_region),
S.State("p", "Velocity", "scalar-field", region=wave_region),
S.State("q", "Stress", "vector-field", region=wave_region),

]
Use of the `substituted=True` keyword to get the co-energy formulation
costates = [

S.CoState("T", "Temperature", states[0], substituted=True),
S.CoState("p", "Velocity", states[1], substituted=True),
S.CoState("q", "Stress", states[2], substituted=True),

]

Add them to the dphs
for state in states:

hw.add_state(state)
for costate in costates:

hw.add_costate(costate)

The same is true for the resistive port for the heat equation.

Define the algebraic port
ports = [

S.Port("Heat flux", "e_Q", "e_Q", "vector-field", substituted=True, region=heat_
→˓region),
]

Add it to the dphs
for port in ports:

hw.add_port(port)

Define the control ports
control_ports = [

S.Control_Port(
"Interface Heat",
"U_T",
"Heat flux",
"Y_T",
"Temperature",
"scalar-field",
region=10,
position="effort"

),
S.Control_Port(

"Interface Wave",
"U_w",

(continues on next page)

2.3. Examples 41

SCRIMP, Release 1.1

(continued from previous page)

"Velocity",
"Y_w",
"Velocity",
"scalar-field",
region=10,
position="effort"

),
This port will be either for the wave or the heat equation
It corresponds to the exterior circle of radius R
S.Control_Port(

"Boundary",
"U_bnd",
"0",
"Y_bnd",
".",
"scalar-field",
region=20,
position="flow"

),
]

Add it to the dphs
for ctrl_port in control_ports:

hw.add_control_port(ctrl_port)

For the FEM choices, see the previous examples.

Define the Finite Elements Method of each port
k = 1
FEMs = [

S.FEM("T", k, "DG"),
S.FEM("Heat flux", k+1, "CG"),
S.FEM("Interface Heat", k, "DG"),
S.FEM("p", k+1, "CG"),
S.FEM("q", k, "DG"),
S.FEM("Interface Wave", k, "DG"),
S.FEM("Boundary", k, "DG"),

]

Add them to the dphs
for FEM in FEMs:

hw.add_FEM(FEM)

The Brick object does not have an optional region keyword, it is mandatory: more precisely, it requires a list of
regions as third argument.

Define the pHs via `Brick` == non-zero block matrices == variational terms
Since we use co-energy formulation, constitutive relations are already taken into
account in the mass matrices M_q and M_p
bricks = [

=== Heat: div-div
S.Brick("M_T", "T*Test_T", [heat_region], dt=True, position="flow"),

(continues on next page)

42 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

S.Brick("M_Q", "e_Q.Test_e_Q", [heat_region], position="flow"),
S.Brick("M_Y_T", "Y_T*Test_Y_T", [10], position="flow"),

S.Brick("D_T", "-Div(e_Q)*Test_T", [heat_region], position="effort"),
S.Brick("D_T^T", "T*Div(Test_e_Q)", [heat_region], position="effort"),
S.Brick("B_T", "U_T*Test_e_Q.Normal", [10], position="effort"),
S.Brick("B_T^T", "e_Q.Normal*Test_Y_T", [10], position="effort"),

=== Wave: grad-grad
S.Brick("M_p", "p*Test_p", [wave_region], dt=True, position="flow"),
S.Brick("M_q", "q.Test_q", [wave_region], dt=True, position="flow"),
S.Brick("M_Y_w", "Y_w*Test_Y_w", [10], position="flow"),

S.Brick("D_w", "-q.Grad(Test_p)", [wave_region], position="effort"),
S.Brick("-D_w^T", "Grad(p).Test_q", [wave_region], position="effort"),
S.Brick("B_w", "U_w*Test_p", [10], position="effort"),
S.Brick("B_w^T", "p*Test_Y_w", [10], position="effort"),

]
=== Boundary depends on where is the heat equation / wave equation
if wave_region==1:

bricks.append(S.Brick("M_Y_bnd", "Y_bnd*Test_Y_bnd", [20], position="flow"))
bricks.append(S.Brick("B_bnd", "U_bnd*Test_e_Q.Normal", [20], position="effort"))
bricks.append(S.Brick("B_bnd^T", "e_Q.Normal*Test_Y_bnd", [20], position="effort"))

else:
bricks.append(S.Brick("M_Y_bnd", "U_bnd*Test_Y_bnd", [20], position="flow"))
bricks.append(S.Brick("B_bnd", "Y_bnd*Test_p", [20], position="effort"))
bricks.append(S.Brick("B_bnd^T", "p*Test_Y_bnd", [20], position="effort"))

for brick in bricks:
hw.add_brick(brick)

Finally, the gyrator interconnection for a system is just an output feedback from the other. The subtility is that, while
the normal along Γ𝐼 depends from which side it is computed on paper, this is not the case numerically: a minus sign
is necessary.

Set the controls
=== Gyrator interconnection
hw.set_control("Interface Heat", "Y_w")
CAREFUL: the numerical normal is the same for both sub-domains! Hence the minus sign.
hw.set_control("Interface Wave", "-Y_T")
=== Dirichlet boundary condition
hw.set_control("Boundary", "0.")

Set the initial data
hw.set_initial_value("T", "5.*np.exp(-25*((x-0.6)*(x-0.6)+y*y))")
hw.set_initial_value("p", "5.*np.exp(-25*((x-0.6)*(x-0.6)+y*y))")
hw.set_initial_value("q", "[0.,0.]")

Solve in time
Define the time scheme ("bdf" is backward differentiation formula)
hw.set_time_scheme(ts_type="bdf",

t_f=15.,
dt=0.001,

(continues on next page)

2.3. Examples 43

SCRIMP, Release 1.1

(continued from previous page)

dt_save=0.05,
ksp_type="preonly",
pc_type="lu",
pc_factor_mat_solver_type="mumps",
)

Solve
hw.solve()

We end as usual with the Hamiltonian plot. Since our study case is known to be strongly stable, but never exponential
nor uniformly in the initial state, we may also invocate the get_Hamiltonian method to make a log-log view of its
evolution.

Post-processing
Set Hamiltonian's name
hw.hamiltonian.set_name("Hamiltonian")
Define each Hamiltonian Term
terms = [

S.Term("Lyapunov heat", "0.5*T*T", [heat_region]),
S.Term("Kinetic energy", "0.5*p*p", [wave_region]),
S.Term("Potential energy", "0.5*q.q", [wave_region]),

]
Add them to the Hamiltonian
for term in terms:

hw.hamiltonian.add_term(term)

Plot the Hamiltonian and save the output
hw.plot_Hamiltonian(save_figure=True, filename="Hamiltonian_Heat"+str(heat_region)+"_Wave
→˓"+str(wave_region)+"_2D.png")

Plot the Hamiltonian in log-log scale
t = hw.solution["t"]
Hamiltonian = hw.get_Hamiltonian()
import matplotlib.pyplot as plt
fig = plt.figure(figsize=[8, 5])
ax = fig.add_subplot(111)
ax.loglog(t, Hamiltonian)
ax.grid(axis="both")
ax.set_xlabel("time t")
ax.set_ylabel("Hamiltonian")
ax.set_title("Evolution of the Hamiltonian (log-log)")
plt.show()

44 Chapter 2. User’s guide

SCRIMP, Release 1.1

2.3. Examples 45

SCRIMP, Release 1.1

2.3.5 The shallow water equation

• file: examples/shallow_water.py

• authors: Ghislain Haine

• date: 22 nov. 2022

• brief: inviscid shallow water equations

examples.shallow_water.shallow_water_eq()

A structure-preserving discretization of the inviscid shallow-water equation

Formulation Grad-Grad, homogeneous boundary condition, on a tank

Setting

The objective of this example is to show how to deal with non-linearity.

Let us consider a bounded domain Ω ⊂ R2. The shallow water equations are constituted of two conservation laws(︂
𝜕𝑡ℎ
𝜕𝑡𝑝

)︂
=

[︂
0 −div

−grad 1
ℎ𝐺(𝜔)

]︂(︂
𝑒ℎ
𝑒𝑝

)︂
,

where ℎ is the height of the fluid, 𝑣 is the velocity, 𝜌 is the fluid density (supposed constant), 𝑝 := 𝜌𝑣 is the linear

momentum, 𝜔 := curl2𝐷 (𝑣) := 𝜕𝑥𝑣𝑦 − 𝜕𝑦𝑣𝑥 is the vorticity, 𝐺(𝜔) := 𝜌

[︂
0 1
−1 0

]︂
𝜔, 𝑒ℎ = 1

2𝜌 ‖𝑣‖
2 + 𝜌𝑔ℎ is the

total pressure and 𝑒𝑝 = ℎ𝑣 is the volumetric flow of the fluid. Thus, the first line of the matrix equation represents the
conservation of the mass (or volume, since the fluid is assumed to be incompressible) and the second represents the
conservation of linear momentum.

Port-Hamiltonian framework

One can define the system Hamiltonian (or total energy) as a functional of ℎ and 𝑝, which are thus called energy
variables

ℋ(ℎ, 𝑝) :=
1

2

∫︁
Ω

ℎ(𝑡, 𝑥)‖𝑝(𝑡, 𝑥)‖2

𝜌
+ 𝜌𝑔ℎ2(𝑡, 𝑥)d𝑥.

The co-energy variables can be computed from the variational derivative of the Hamiltonian such that

𝑒ℎ = 𝛿ℎℋ =
1

2
𝜌‖𝑣‖2 + 𝜌𝑔ℎ,

𝑒𝑝 = 𝛿𝑝ℋ = ℎ𝑣.

The time-derivative of the Hamiltonian can then be obtained computed and depends only on the boundary variables

d

d𝑡
ℋ = −

∫︁
𝜕Ω

𝑒ℎ(𝑡, 𝑠)𝑒𝑝(𝑡, 𝑠) · 𝑛(𝑠)d𝑠,

which enables to define collocated control and observation distributed ports along the boundary 𝜕Ω. For example, one
may define

𝑢𝜕 = −𝑒𝑝 · 𝑛,
𝑦𝜕 = 𝑒ℎ,

and the power-balance is given by a product between input and output boundary ports. The system is lossless, and
conservative in the absence of control.

46 Chapter 2. User’s guide

SCRIMP, Release 1.1

Structure-preserving discretization

First, let us multiply the linear momentum conservation equation by ℎ.

Let us consider sufficiently regular test functions 𝜙 and Φ on Ω, and 𝜓 test functions at the boundary 𝜕Ω. The weak
form of the previous equations reads⎧⎪⎪⎨⎪⎪⎩

(𝜕𝑡ℎ, 𝜙)𝐿2 = − (div (ℎ𝑒𝑝) , 𝜙)𝐿2 ,

(ℎ𝜕𝑡𝑝,Φ)(𝐿2)2 = − (ℎgrad (𝑒ℎ) ,Φ)(𝐿2)2 +

(︂
curl2𝐷 (𝑝)

[︂
0 1
−1 0

]︂
𝑒𝑝,Φ

)︂
(𝐿2)2

,

(𝑦𝜕 , 𝜓)𝜕Ω = (𝑒ℎ, 𝜓)𝜕Ω .

Applying integration by parts on the first line leads to⎧⎪⎪⎨⎪⎪⎩
(𝜕𝑡ℎ, 𝜙)𝐿2 = (ℎ𝑒𝑝, grad (𝜙))𝐿2 + (ℎ𝑢𝜕 , 𝜙)𝜕Ω ,

(ℎ𝜕𝑡𝑝,Φ)(𝐿2)2 = − (ℎgrad (𝑒ℎ) ,Φ)(𝐿2)2 +

(︂
curl2𝐷 (𝑝)

[︂
0 1
−1 0

]︂
𝑒𝑝,Φ

)︂
(𝐿2)2

,

(𝑦𝜕 , 𝜓)𝜕Ω = (𝑒ℎ, 𝜓)𝜕Ω .

Furthermore, the weak form of the constitutive relations write⎧⎨⎩ (𝑒ℎ, 𝜙)𝐿2 = (𝜌𝑔ℎ, 𝜙)𝐿2 +
(︁

‖𝑝‖2

2𝜌 , 𝜙
)︁
𝐿2
,

(𝑒𝑝,Φ)(𝐿2)2 =
(︁

𝑝
𝜌 ,Φ

)︁
(𝐿2)2

.

Now, let us choose three finite families (𝜙𝑖)1≤𝑖≤𝑁ℎ
⊂ 𝐻1(Ω), (Φ𝑘)1≤𝑘≤𝑁𝑝

⊂ (𝐿2(Ω))2 and (𝜓𝑚)1≤𝑚≤𝑁𝜕
and

project the weak formulations on them: for all 1 ≤ 𝑖 ≤ 𝑁ℎ, all 1 ≤ 𝑘 ≤ 𝑁𝑝 and all 1 ≤ 𝑚 ≤ 𝑁𝜕⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︀𝑁ℎ

𝑗=1
d
d𝑡ℎ

𝑗
(︀
𝜙𝑗 , 𝜙𝑖

)︀
𝐿2 =

∑︀𝑁𝑝

ℓ=1 𝑒
ℓ
𝑝

(︀
ℎ𝑑Φℓ, grad

(︀
𝜙𝑖
)︀)︀

𝐿2 +
∑︀𝑁𝜕

𝑛=1 𝑢
𝑛
𝜕

(︀
ℎ𝑑𝜓𝑛, 𝜙𝑖

)︀
𝜕Ω
,∑︀𝑁𝑝

ℓ=1
d
d𝑡𝑝

ℓ
(︀
ℎ𝑑Φℓ,Φ𝑘

)︀
(𝐿2)2

= −
∑︀𝑁ℎ

𝑗=1 𝑒
𝑗
ℎ

(︀
ℎ𝑑grad

(︀
𝜙𝑗

)︀
,Φ𝑘

)︀
(𝐿2)2

+
∑︀𝑁𝑝

ℓ=1 𝑒
ℓ
𝑝

(︂
curl2𝐷

(︀
𝑝𝑑
)︀ [︂ 0 1

−1 0

]︂
Φℓ,Φ𝑘

)︂
(𝐿2)2

,∑︀𝑁𝜕

𝑛=1 𝑦
𝑛
𝜕 (𝜓𝑛, 𝜓𝑚)𝜕Ω =

∑︀𝑁ℎ

𝑗=1 𝑒
𝑗
ℎ

(︀
𝜙𝑗 , 𝜓𝑚

)︀
𝜕Ω
,

where ℎ𝑑 :=
∑︀𝑁ℎ

𝑖=1 ℎ
𝑖𝜙𝑖 is the approximation of ℎ and 𝑝𝑑 :=

∑︀𝑁𝑝

𝑘=1 𝑝
𝑘Φ𝑘 is the approximation of 𝑝. The constitutive

relations read for all 1 ≤ 𝑖 ≤ 𝑁ℎ and all 1 ≤ 𝑘 ≤ 𝑁𝑝⎧⎨⎩
∑︀𝑁ℎ

𝑗=1 𝑒
𝑗
ℎ

(︀
𝜙𝑗 , 𝜙𝑖

)︀
𝐿2 =

∑︀𝑁ℎ

𝑗=1 ℎ
𝑗
(︀
𝜌𝑔𝜙𝑗 , 𝜙𝑖

)︀
𝐿2 +

∑︀𝑁𝑝

ℓ=1 𝑝
ℓ
(︁

Φℓ·𝑝𝑑

2𝜌 , 𝜙𝑖
)︁
𝐿2
,∑︀𝑁𝑝

ℓ=1 𝑒
ℓ
𝑝

(︀
Φℓ,Φ𝑘

)︀
(𝐿2)2

=
∑︀𝑁𝑝

ℓ=1 𝑝
ℓ
(︁

Φℓ

𝜌 ,Φ
𝑘
)︁
(𝐿2)2

.

Defining ⋆ the vector gathering the coefficient of the approximation of the variable ⋆ in its appropriate finite family,
one may write the discrete weak formulations in matrix notation⎡⎣𝑀ℎ 0 0

0 𝑀𝑝[ℎ
𝑑] 0

0 0 𝑀𝜕

⎤⎦⎛⎝ ℎ
𝑝

−𝑦𝜕

⎞⎠ =

⎡⎣ 0 𝐷[ℎ𝑑] 𝐵[ℎ𝑑]
−𝐷[ℎ𝑑]⊤ 𝐺[𝑝𝑑] 0
−𝐵⊤ 0 0

⎤⎦⎛⎝𝑒ℎ𝑒𝑝
𝑢𝜕

⎞⎠ .

where the matrices are given by

(𝑀ℎ)𝑖𝑗 :=
(︀
𝜙𝑗 , 𝜙𝑖

)︀
𝐿2 (𝑀𝑝[ℎ

𝑑])𝑘ℓ :=
(︀
ℎ𝑑Φℓ,Φ𝑘

)︀
(𝐿2)2

,

(𝐷[ℎ𝑑])𝑖ℓ :=
(︀
ℎ𝑑Φℓ, grad

(︀
𝜙𝑖
)︀)︀

𝐿2 , (𝐵[ℎ𝑑])𝑖𝑛 :=
(︀
ℎ𝑑𝜓𝑛, 𝜙𝑖

)︀
𝜕Ω
,

and

(𝑀𝜕)𝑚𝑛 := (𝜓𝑛, 𝜓𝑚)𝜕Ω , (𝐵)𝑖𝑛 :=
(︀
𝜓𝑛, 𝜙𝑖

)︀
𝜕Ω
.

2.3. Examples 47

SCRIMP, Release 1.1

The constitutive relations read [︂
𝑀ℎ 0
0 𝑀𝑝

]︂(︂
𝑒ℎ
𝑒𝑝

)︂
=

[︂
𝑄ℎ 𝑃ℎ[ℎ

𝑑]
0 𝑄𝑝

]︂(︂
ℎ
𝑝

)︂
,

where the matrices are given by

(𝑀𝑝)𝑘ℓ :=
(︀
Φℓ,Φ𝑘

)︀
(𝐿2)2

, (𝑄ℎ)𝑖𝑗 :=
(︀
𝜌𝑔𝜙𝑗 , 𝜙𝑖

)︀
𝐿2 ,

(𝑃ℎ[ℎ
𝑑])𝑖ℓ :=

(︂
Φℓ · 𝑝𝑑

2𝜌
, 𝜙𝑖

)︂
𝐿2

, (𝑄𝑑)𝑘ℓ :=

(︂
Φℓ

𝜌
,Φ𝑘

)︂
(𝐿2)2

.

With these definition, one may prove the discrete power balance

d

d𝑡
ℋ𝑑(𝑡) = 𝑢𝜕

⊤(𝑡)𝑀𝜕𝑦𝜕(𝑡).

Simulation

The beggining is classical: first import, then create the dphs and set the domain.

Import scrimp
import scrimp as S

Init the distributed port-Hamiltonian system
swe = S.DPHS("real")

Set the domain (using the built-in geometry `Rectangle`)
Labels: Omega = 1, Gamma_Bottom = 10, Gamma_Right = 11, Gamma_Top = 12, Gamma_Left = 13
swe.set_domain(S.Domain("Rectangle", {"L": 2.0, "l": 0.5, "h": 0.1}))

Then the states and co-states.

Define the states and costates
states = [

S.State("h", "Fluid height", "scalar-field"),
S.State("p", "Linear momentum", "vector-field"),

]
costates = [

S.CoState("e_h", "Pressure", states[0]),
S.CoState("e_p", "Velocity", states[1]),

]

Add them to the dphs
for state in states:

swe.add_state(state)
for costate in costates:

swe.add_costate(costate)

And the control ports.

Define the control ports
control_ports = [

S.Control_Port(
"Boundary control 0",

(continues on next page)

48 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

"U_0",
"Normal velocity",
"Y_0",
"Fluid height",
"scalar-field",
region=10,
position="effort",

),
S.Control_Port(

"Boundary control 1",
"U_1",
"Normal velocity",
"Y_1",
"Fluid height",
"scalar-field",
region=11,
position="effort",

),
S.Control_Port(

"Boundary control 2",
"U_2",
"Normal velocity",
"Y_2",
"Fluid height",
"scalar-field",
region=12,
position="effort",

),
S.Control_Port(

"Boundary control 3",
"U_3",
"Normal velocity",
"Y_3",
"Fluid height",
"scalar-field",
region=13,
position="effort",

),
]

Add them to the dphs
for ctrl_port in control_ports:

swe.add_control_port(ctrl_port)

Regarding the FEM, this is more challenging, as non-linearity are present. Nevertheless, let us stick to the way we
choose until now: since the ℎ-type variables will be derivated, thus we choose continuous Galerkin approximations of
order 𝑘+1. The other energy variable is taken as continuous Galerkin approximation of order 𝑘, while boundary terms
are given by discontinuous Galerkin approximations of order 𝑘.

Define the Finite Elements Method of each port
k = 1
FEMs = [

(continues on next page)

2.3. Examples 49

SCRIMP, Release 1.1

(continued from previous page)

S.FEM(states[0].get_name(), k+1, FEM="CG"),
S.FEM(states[1].get_name(), k, FEM="CG"),
S.FEM(control_ports[0].get_name(), k, "DG"),
S.FEM(control_ports[1].get_name(), k, "DG"),
S.FEM(control_ports[2].get_name(), k, "DG"),
S.FEM(control_ports[3].get_name(), k, "DG"),

]

Add them to the dphs
for FEM in FEMs:

swe.add_FEM(FEM)

The parameters are physically meaningful!

Define physical parameters
rho = 1000.
g = 10.
parameters = [

S.Parameter("rho", "Mass density", "scalar-field", f"{rho}", "h"),
S.Parameter("g", "Gravity", "scalar-field", f"{g}", "h"),

]

Add them to the dphs
for parameter in parameters:

swe.add_parameter(parameter)

Here are the difficult part. We need to define the weak form of each block matrices, and take non-linearities into
account. To do so, the GFWL of GetFEM is transparent, but it is mandatory to say to SCRIMP that the Brick is
non-linear, using the keyword linear=False. It is also possible to ask for this block to be considered explicitly in the
time scheme (i.e. it will be computed with the previous time step values and be considered as a right-hand side), as
done for the gyroscopic term below, using the keyword explicit=True.

Define the pHs via `Brick` == non-zero block matrices == variational terms
Some macros for the sake of readability
swe.gf_model.add_macro('div(v)', 'Trace(Grad(v))')
swe.gf_model.add_macro('Rot', '[[0,1],[-1,0]]')
swe.gf_model.add_macro('Curl2D(v)', 'div(Rot*v)')
swe.gf_model.add_macro('Gyro(v)', 'Curl2D(v)*Rot')
bricks = [

Define the mass matrices of the left-hand side of the "Dirac structure" (position=
→˓"flow")

S.Brick("M_h", "h * Test_h", [1], dt=True, position="flow"),
S.Brick("M_p", "h * p . Test_p", [1], dt=True, linear=False, position="flow"),
S.Brick("M_Y_0", "Y_0 * Test_Y_0", [10], position="flow"),
S.Brick("M_Y_1", "Y_1 * Test_Y_1", [11], position="flow"),
S.Brick("M_Y_2", "Y_2 * Test_Y_2", [12], position="flow"),
S.Brick("M_Y_3", "Y_3 * Test_Y_3", [13], position="flow"),

Define the first line of the right-hand side of the "Dirac structure" (position=
→˓"effort")

S.Brick("-D^T", "h * e_p . Grad(Test_h)", [1], linear=False, position="effort"),
with the boundary control

(continues on next page)

50 Chapter 2. User’s guide

SCRIMP, Release 1.1

(continued from previous page)

S.Brick("B_0", "- U_0 * Test_h", [10], position="effort"),
S.Brick("B_1", "- U_1 * Test_h", [11], position="effort"),
S.Brick("B_2", "- U_2 * Test_h", [12], position="effort"),
S.Brick("B_3", "- U_3 * Test_h", [13], position="effort"),
Define the second line of the right-hand side of the "Dirac structure" (position=

→˓"effort")
S.Brick("D", "- Grad(e_h) . Test_p * h", [1], linear=False, position="effort"),
with the gyroscopic term (beware that "Curl" is not available in the GWFL of␣

→˓getfem)
S.Brick("G", "(Gyro(p) * e_p) . Test_p", [1], linear=False, explicit=True, position=

→˓"effort"),
Define the third line of the right-hand side of the "Dirac structure" (position=

→˓"effort")
S.Brick("C_0", "- e_h * Test_Y_0", [10], position="effort"),
S.Brick("C_1", "- e_h * Test_Y_1", [11], position="effort"),
S.Brick("C_2", "- e_h * Test_Y_2", [12], position="effort"),
S.Brick("C_3", "- e_h * Test_Y_3", [13], position="effort"),

Define the constitutive relations (position="constitutive", the default value)
For e_h: first the mass matrix WITH A MINUS because we want an implicit␣

→˓formulation 0 = - M e_h + F(h)
S.Brick("-M_e_h", "- e_h * Test_e_h", [1]),
second the linear part as a linear brick
S.Brick("Q_h", "rho * g * h * Test_e_h", [1]),
third the non-linear part as a non-linear brick (linear=False)
S.Brick("P_h", "0.5 * (p . p) / rho * Test_e_h", [1], linear=False),
For e_p: first the mass matrix WITH A MINUS because we want an implicit␣

→˓formulation 0 = - M e_p + F(p)
S.Brick("-M_e_p", "- e_p . Test_e_p", [1]),
second the LINEAR brick
S.Brick("Q_p", "p / rho . Test_e_p", [1]),

]
for brick in bricks:

swe.add_brick(brick)

As we just look at how it works, let us consider a step in the height, no initial velocity, and homogeneous Neumann
boundary condition. This should look like a dam break experiment in a rectangular tank.

Remark: note the use of np, i.e. numpy, in the definition of the initial height ℎ0.

Initialize the problem
swe.set_control("Boundary control 0", "0.")
swe.set_control("Boundary control 1", "0.")
swe.set_control("Boundary control 2", "0.")
swe.set_control("Boundary control 3", "0.")

Set the initial data
swe.set_initial_value("h", "3. - (np.sign(x-0.5)+1)/3.")
swe.set_initial_value("p", f"[0., 0.]")

Solve in time
Define the time scheme
swe.set_time_scheme(

(continues on next page)

2.3. Examples 51

SCRIMP, Release 1.1

(continued from previous page)

ts_type="bdf",
ts_bdf_order=4,
t_f=0.5,
dt=0.0001,
dt_save=0.01,

)

Solve the system in time
swe.solve()

The Hamiltonian are then defined, computed, and shown.

Post-processing
Set Hamiltonian's name
swe.hamiltonian.set_name("Mechanical energy")
Define Hamiltonian terms
terms = [

S.Term("Kinetic energy", "0.5*h*p.p/rho", [1]),
S.Term("Potential energy", "0.5*rho*g*h*h", [1]),

]
Add them to the Hamiltonian
for term in terms:

swe.hamiltonian.add_term(term)
Plot the Hamiltonian
swe.plot_Hamiltonian(save_figure=True, filename="Hamiltonian_Inviscid_Shallow_Water_2D.
→˓png")

52 Chapter 2. User’s guide

SCRIMP, Release 1.1

2.4 Notebooks

Some examples coming from our publications are available in jupyter notebook format inside the notebooks folder in
examples.

2.4.1 Install jupyter

To begin with, you’ll need to install jupyter.

It can be done in the scrimp environment with:

1. conda activate scrimp

2. conda install jupyter ipykernel

3. python -m ipykernel install –user –name scrimp –display-name “Python (scrimp)”

2.4.2 Run jupyter

Then, run in the notebooks folder:

jupyter notebook &

And choose a notebook to launch.

If you aim at learning SCRIMP, the preferred order to study the notebooks is:

• Wave_1D

• Wave_2D

• Heat_2D

• Wave_2D_CoEnergy

• Heat_Wave_2D

• Shallow_water_2D

2.5 Graphical User Interface

As to increase the facility to perform simulations from scratch, a Graphical User Interface (GUI) is available to help
beginners and confirmed users to scrimp and save time by sketching a first launchable script.

#TO COMPLETE#

2.6 Bibliography

Port-Hamiltonian systems is an ever-growing research area as it proposes a powerful framework for the control of
multi-physics systems.

The following list of publications presents the main results of ours behind SCRIMP.

2.4. Notebooks 53

https://jupyter.org/

SCRIMP, Release 1.1

2.6.1 Articles

• Haine, Ghislain and Matignon, Denis and Serhani, Anass. Numerical Analysis of a Structure-Preserving
Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled N-Dimensional Wave
Equation As a Port-Hamiltonian System. (2023) International Journal of Numerical Analysis and Modeling,
20 (1). 92-133. DOI:10.4208/ijnam2023-1005

• Haine, Ghislain and Matignon, Denis and Monteghetti, Florian. Long-time behavior of a coupled heat-wave
system using a structure-preserving finite element method. (2022) Mathematical Reports, 22 (1-2). 187-215.
PDF

• Mora, Luis A. and Le Gorrec, Yann and Matignon, Denis and Ramirez, Hector and Yuz, Juan I.. On port-
Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. (2021) Physics of Fluids, 33
(11). 117117. DOI:10.1063/5.0067784

• Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent. A Partitioned Finite Element
Method for power-preserving discretization of open systems of conservation laws. (2021) IMA Journal
of Mathematical Control and Information, 38 (2). 493-533. DOI:10.1093/imamci/dnaa038

• Brugnoli, Andrea and Haine, Ghislain and Serhani, Anass and Vasseur, Xavier. Numerical Approximation of
Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control. (2021) Journal of
Applied Mathematics and Physics, 09 (06). 1278-1321. DOI:10.4236/jamp.2021.96088

• Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Port-Hamiltonian
flexible multibody dynamics. (2021) Multibody System Dynamics, 51 (3). 343-375. DOI:10.1007/s11044-020-
09758-6

• Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. A port-
Hamiltonian formulation of linear thermoelasticity and its mixed finite element discretization. (2021)
Journal of Thermal Stresses, 44 (6). 643-661. DOI:10.1080/01495739.2021.1917322

• Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Pommier-Budinger, Valérie. Port-Hamiltonian model
of two-dimensional shallow water equations in moving containers. (2020) IMA Journal of Mathematical
Control and Information, 37 (4). 1348-1366. DOI:10.1093/imamci/dnaa016

• Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Port-Hamiltonian
formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. (2019)
Applied Mathematical Modelling, 75. 940-960. DOI:10.1016/j.apm.2019.04.035

• Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Port-Hamiltonian
formulation and symplectic discretization of plate models. Part II : Kirchhoff model for thin plates. (2019)
Applied Mathematical Modelling, 75. 961-981. DOI:10.1016/j.apm.2019.04.036

• Aoues, Saïd and Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Alazard, Daniel. Modeling and Con-
trol of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. (2019) IEEE Transactions on Control
Systems Technology, 27 (1). 355-362. DOI:10.1109/TCST.2017.2771244

• Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Pommier-Budinger, Valérie. A port-Hamiltonian
model of liquid sloshing in moving containers and application to a fluid-structure system. (2017) Jour-
nal of Fluids and Structures, 69. 402-427. DOI:10.1016/j.jfluidstructs.2016.12.007

54 Chapter 2. User’s guide

https://doi.org/10.4208/ijnam2023-1005
http://imar.ro/journals/Mathematical_Reports/Pdfs/2022/1-2/11.pdf
https://doi.org/10.1063/5.0067784
https://doi.org/10.1093/imamci/dnaa038
https://doi.org/10.4236/jamp.2021.96088
https://doi.org/10.1007/s11044-020-09758-6
https://doi.org/10.1007/s11044-020-09758-6
https://doi.org/10.1080/01495739.2021.1917322
https://doi.org/10.1093/imamci/dnaa016
https://doi.org/10.1016/j.apm.2019.04.035
https://doi.org/10.1016/j.apm.2019.04.036
http://dx.doi.org/10.1109/TCST.2017.2771244
http://dx.doi.org/10.1016/j.jfluidstructs.2016.12.007

SCRIMP, Release 1.1

2.6.2 Book Chapters

• Haine, Ghislain and Matignon, Denis. Structure-Preserving Discretization of a Coupled Heat-Wave Sys-
tem, as Interconnected Port-Hamiltonian Systems. (2021) In: Geometric Science of Information. Springer
International Publishing AG, 191-199. DOI:10.1007/978-3-030-80209-7_22

• Serhani, Anass and Matignon, Denis and Haine, Ghislain. A Partitioned Finite Element Method for
the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with
Boundary Control. (2019) In: Geometric Science of Information. Springer International Publishing AG, Cham,
Suisse, 549-558. DOI:10.1007/978-3-030-26980-7_57

2.6.3 Proceedings

• Brugnoli, Andrea and Haine, Ghislain and Matignon, Denis. Explicit structure-preserving discretization of
port-Hamiltonian systems with mixed boundary control. (2022) In: 25th International Symposium on Math-
ematical Theory of Networks and Systems (MTNS 2022), 12 September 2022 - 16 September 2022 (Bayreuth,
Germany).

• Haine, Ghislain and Matignon, Denis and Monteghetti, Florian. Structure-preserving discretization of
Maxwell’s equations as a port-Hamiltonian system. (2022) In: 25th International Symposium on Mathe-
matical Theory of Networks and Systems (MTNS 2022), 12 September 2022 - 16 September 2022 (Bayreuth,
Germany).

• Haine, Ghislain and Lefèvre, Laurent and Matignon, Denis. PFEM: a mixed structure-preserving discretiza-
tion method for port-Hamiltonian systems. (2022) In: International Workshop on Operator Theory and its
Applications, 6 September 2022 - 10 September 2022 (Cracovie, Poland).

• Brugnoli, Andrea and Matignon, Denis. A port-Hamiltonian formulation for the full von-Kármán plate
model. (2022) In: 10th European Nonlinear Dynamics Conference (ENOC), 17 July 2022 - 22 July 2022 (Lyon,
France).

• Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent. A Partitioned Finite Element
Method (PFEM) for power-preserving discretization of port-Hamiltonian systems (pHs) with polynomial
nonlinearity. (2022) In: European Nonlinear Dynamics Conference (ENOC 2022), 17 July 2022 - 22 July 2022
(Lyon, France).

• Hélie, Thomas and Matignon, Denis. Nonlinear damping laws preserving the eigenstructure of the momen-
tum space for conservative linear PDE problems: a port-Hamiltonian modelling. (2022) In: 10th European
Nonlinear Dynamics Conference (ENOC), 17 July 2022 - 22 July 2022 (Lyon, France).

• Bendimerad-Hohl, Antoine and Haine, Ghislain and Matignon, Denis and Maschke, Bernhard. Structure-
preserving discretization of a coupled Allen-Cahn and heat equation system. (2022) In: 4th IFAC Workshop
on Thermodynamic Foundations of Mathematical Systems Theory - TFMST 2022, 25 July 2022 - 27 July 2022
(Montreal, Canada).

• Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent. Dissipative Shallow Water Equa-
tions: a port-Hamiltonian formulation. (2021) In: Lagrangian and Hamiltonian Methodes for Nonlinear
Control (7th LHMNC 2021), 11 October 2021 - 13 October 2021 (Berlin, Germany).

• Haine, Ghislain and Matignon, Denis. Incompressible Navier-Stokes Equation as port-Hamiltonian sys-
tems: velocity formulation versus vorticity formulation. (2021) In: Lagrangian and Hamiltonian Methodes
for Nonlinear Control (7th LHMNC 2021), 11 October 2021 - 13 October 2021 (Berlin, Germany).

• Brugnoli, Andrea and Rashad, Ramy and Califano, Federico and Stramigioli, Stefano and Matignon, Denis.
Mixed finite elements for port-Hamiltonian models of von Kármán beams. (2021) In: Lagrangian and
Hamiltonian Methodes for Nonlinear Control (LHMNLC 2021), 11 October 2021 - 13 October 2021 (Berlin,
Germany).

2.6. Bibliography 55

https://doi.org/10.1007/978-3-030-80209-7_22
https://doi.org/10.1007/978-3-030-26980-7_57

SCRIMP, Release 1.1

• Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Structure-
preserving discretization of port-Hamiltonian plate models. (2021) In: Mathematical Theory of Networks
and Systems, August 2021 - August 2021 (Cambridge, United Kingdom).

• Brugnoli, Andrea and Matignon, Denis and Haine, Ghislain and Serhani, Anass. Numerics for Physics-Based
PDEs with Boundary Control: the Partitioned Finite Element Method for Port-Hamiltonian Systems.
(2021) In: SIAM Conference on Computational Science and Engineering (CSE21), 1 March 2021 - 5 March
2021 (Virtual conference).

• Brugnoli, Andrea and Cardoso-Ribeiro, Flávio Luiz and Haine, Ghislain and Kotyczka, Paul. Partitioned finite
element method for structured discretization with mixed boundary conditions. (2020) In: 21th IFAC World
Congress, 11 July 2020 - 17 July 2020 (Berlin, Germany).

• Mora, Luis A. and Gorrec, Yann Le and Matignon, Denis and Ramirez, Hector and Yuz, Juan I.. About Dissi-
pative and Pseudo Port-Hamiltonian Formulations of Irreversible Newtonian Compressible Flows. (2020)
In: The 21st World Congress of The International Federation of Automatic Control (IFAC 2020), 11 July 2020
- 17 July 2020 (Vitual event, Germany).

• Payen, Gabriel and Matignon, Denis and Haine, Ghislain. Modelling and structure-preserving discretization
of Maxwell’s equations as port-Hamiltonian system. (2020) In: The 21st World Congress of The International
Federation of Automatic Control (IFAC 2020), 11 July 2020 - 17 July 2020 (Virtual event, Germany).

• Treton, Anne-Sophie and Haine, Ghislain and Matignon, Denis. Modelling the 1D piston problem as inter-
connected port-Hamiltonian systems. (2020) In: The 21st World Congress of The International Federation of
Automatic Control (IFAC 2020), 11 July 2020 - 17 July 2020 (Virtual event, Germany).

• Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Interconnection
of the Kirchhoff plate within the port-Hamiltonian framework. (2020) In: 2019 IEEE 58th Conference on
Decision and Control (CDC), 11 December 2019 - 13 December 2019 (Nice, France).

• Cardoso-Ribeiro, Flávio Luiz and Brugnoli, Andrea and Matignon, Denis and Lefèvre, Laurent. Port-
Hamiltonian modeling, discretization and feedback control of a circular water tank. (2020) In: 2019 IEEE
58th Conference on Decision and Control (CDC), 11 December 2019 - 13 December 2019 (Nice, France).

• Serhani, Anass and Haine, Ghislain and Matignon, Denis. Anisotropic heterogeneous n-D heat equation with
boundary control and observation : I. Modeling as port-Hamiltonian system. (2019) In: 3rd IFAC Workshop
on Thermodynamic Foundations for a Mathematical Systems Theory (TFMST 2019), 3 July 2019 - 5 July 2019
(Louvain-la-Neuve, Belgium).

• Serhani, Anass and Haine, Ghislain and Matignon, Denis. Anisotropic heterogeneous n-D heat equation with
boundary control and observation : II. Structure-preserving discretization. (2019) In: 3rd IFAC Workshop
on Thermodynamic Foundations for a Mathematical Systems Theory (TFMST 2019), 3 July 2019 - 5 July 2019
(Louvain-la-Neuve, Belgium).

• Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis. Partitioned finite
element method for the Mindlin plate as a port-Hamiltonian system. (2019) In: 3nd IFAC Workshop on
Control of Systems Governed by Partial Differential Equations CPDE 2019, 20 May 2019 - 24 May 2019 (Oaxaca,
Mexico). (Unpublished)

• Serhani, Anass and Matignon, Denis and Haine, Ghislain. Partitioned Finite Element Method for port-
Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. (2019)
In: 3rd IFAC/IEEE CSS Workshop on Control of Systems Governed by Partial Differential Equations CPDE and
XI Workshop Control of Distributed Parameter Systems (CDPS 2019), 20 May 2019 - 24 May 2019 (Oaxaca,
Mexico).

• Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis and Lefèvre, Laurent. A structure-preserving Partitioned
Finite Element Method for the 2D wave equation. (2018) In: 6th IFAC Workshop on Lagrangian and Hamil-
tonian Methods for Nonlinear Control, 1 May 2018 - 4 May 2018 (Valparaíso, Chile).

56 Chapter 2. User’s guide

SCRIMP, Release 1.1

• Alazard, Daniel and Aoues, Saïd and Cardoso-Ribeiro, Flávio Luiz and Matignon, Denis. Disturbance rejec-
tion for a rotating flexible spacecraft: a port-Hamiltonian approach. (2018) In: 6th IFAC Workshop on
Lagrangian and Hamiltonian Methods for Nonlinear Control, 1 May 2018 - 4 May 2018 (Valparaíso, Chile).

• Serhani, Anass and Matignon, Denis and Haine, Ghislain. Structure-Preserving Finite Volume Method for
2D Linear and Non-Linear Port-Hamiltonian Systems. (2018) In: 6th IFAC Workshop on Lagrangian and
Hamiltonian Methods for Nonlinear Control, 1 May 2018 - 4 May 2018 (Valparaíso, Chile).

2.7 Code documentation

This part of the documentation is generated automatically from the python source using SPHINX.

2.7.1 Folders

scrimp.examples

We provide some examples coming from our publications.

The equations are explained here.

Wave

• file: examples/wave.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 22 nov. 2022

• brief: 2D wave equations

examples.wave.wave_eq()

A structure-preserving discretization of the wave equation with mixed boundary control

Formulation DAE (energy/co-energy), Grad-Grad, Mixed boundary condition on the Rectangle Undamped case.

• file: examples/wave_coenergy.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 22 nov. 2022

• brief: wave equations in co-energy formulation, two sub-domains

examples.wave_coenergy.wave_coenergy_eq()

A structure-preserving discretization of the wave equation with boundary control

Formulation co-energy, Grad-Grad, output feedback law at the boundary, damping on a subdomain

2.7. Code documentation 57

https://www.sphinx-doc.org/en/master/

SCRIMP, Release 1.1

Heat

• file: examples/heat.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 22 nov. 2022

• brief: 2D heat equation with Lyapunov Hamiltonian

examples.heat.heat_eq()

A structure-preserving discretization of the heat equation with mixed boundary control

Formulation with substitution of the co-state, Lyapunov L^2 functional, Div-Div, Mixed boundary condition on
the Rectangle (including impedance-like absorbing boundary condition).

Heat-Wave coupling

• file: sandbox/heat_hw.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 15 dec. 2022

• brief: a 2D coupled heat-wave system

examples.heat_wave.heat_wave_eq(heat_region=1, wave_region=2)
A structure-preserving discretization of a coupled heat-wave equation

Co-energy formulations, heat: div-div, wave: grad-grad, gyrator interconnection On the Concentric built-in
geometry: 1: internal disk, 2: exterior annulus

Args:
heat_region (int): the label of the region where the heat equation lies wave_region (int): the label of the
region where the wave equation lies

Shallow water

• file: examples/shallow_water.py

• authors: Ghislain Haine

• date: 22 nov. 2022

• brief: inviscid shallow water equations

examples.shallow_water.shallow_water_eq()

A structure-preserving discretization of the inviscid shallow-water equation

Formulation Grad-Grad, homogeneous boundary condition, on a tank

58 Chapter 2. User’s guide

SCRIMP, Release 1.1

scrimp.utils

This folder contains useful functions that are beyond the port-Hamiltonian framework used in SCRIMP.

Config

• file: utils/config.py

• authors: Ghislain Haine

• date: 23 jun. 2023

• brief: functions to configure SCRIMP

scrimp.utils.config.set_paths(path=None)
Set the default path of scrimp

Args:
path (str): the path

scrimp.utils.config.set_verbose(verbose=1)
Set the verbosity level of scrimp (0: quiet, 1: info, 2: debug)

In quiet mode, debug are saved in a log file.

Args:
verbose (int): the level of verbosity, defaults to 1

scrimp.utils.config.set_verbose_gf(verbose)
Set the verbosity level of getfem

Args:
verbose (int): the level of verbosity

Linear algebra

• file: utils/linalg.py

• authors: Ghislain Haine, Florian Monteghetti

• date: 29 nov. 2022

• brief: linear algebra functions

scrimp.utils.linalg.convert_PETSc_to_scipy(A)
Convert from PETSc.Mat to scipy sparse (csr).

Args:
A (PETSc Mat): The matrix to convert

Returns:
scipy.sparse.csr.csr_matrix: the matrix A in scipy.sparse.csr.csr_matrix format

scrimp.utils.linalg.convert_gmm_to_petsc(M, B, comm=petsc4py.PETSc.COMM_WORLD)

Convert a GetFEM matrix M to a PETSc one B

Args:
M (SPMat GetFEM): matrix to transfer B (PETSc.Mat): matrix to fill M with comm (MPI_Comm): MPI
communicator

2.7. Code documentation 59

SCRIMP, Release 1.1

Returns:
None

scrimp.utils.linalg.extract_gmm_to_scipy(I , J, M)

Extract a sub-matrix A from M, on interval I, J

Args:
I (Numpy array): line interval [begin, lenght] J (Numpy array): column interval [begin, lenght] M (SPMat
GetFEM): matrix from which to extract the submatrix

Returns:
PETSc.Mat: matrix with value M(I,J) in CSR format

Returns:
scipy.sparse.csr.csr_matrix: the matrix A in scipy.sparse.csr.csr_matrix format

Mesh

• file: utils/mesh.py

• authors: Ghislain Haine

• date: 22 nov. 2022

• brief: built-in geometries for direct use in SCRIMP

scrimp.utils.mesh.Ball(parameters={'R': 1.0, 'h': 0.1}, refine=0, terminal=1)
The geometry of a Ball of radius R centered in (0,0,0) with mesh size h

• Domain Omega: 1,

• Boundary Gamma: 10

Args:
• parameters (dict): The dictionary of parameters for the geometry

• refine (int): Ask for iterative refinements by splitting elements

• terminal (int): An option to print meshing infos in the prompt, value 0 (quiet) or 1 (verbose, default)

Returns:
list[gf.Mesh, int, dict, dict]: The mesh to use with getfem, the dimension, a dict of regions with getfem
indices for dim n and a dict of regions with getfem indices for dim n-1

scrimp.utils.mesh.Concentric(parameters={'R': 1.0, 'h': 0.1, 'r': 0.6}, refine=0, terminal=1)
The geometry of a Disk of radius r surrounded by an annulus of radii r and R with mesh size h

• Domain Omega_Disk: 1,

• Domain Omega_Annulus: 2,

• Interface Interface: 10,

• Boundary Gamma: 20

Args:
• parameters (dict): The dictionary of parameters for the geometry

• refine (int): Ask for iterative refinements by splitting elements

• terminal (int): An option to print meshing infos in the prompt, value 0 (quiet) or 1 (verbose, default)

60 Chapter 2. User’s guide

SCRIMP, Release 1.1

Returns:
list[gf.Mesh, int, dict, dict]: The mesh to use with getfem, the dimension, a dict of regions with getfem
indices for dim n and a dict of regions with getfem indices for dim n-1

scrimp.utils.mesh.Disk(parameters={'R': 1.0, 'h': 0.1}, refine=0, terminal=1)
The geometry of a Disk center in (0,0) with radius R and mesh size h

• Domain Omega: 1,

• Boundary Gamma: 10

Args:
• parameters (dict): The dictionary of parameters for the geometry

• refine (int): Ask for iterative refinements by splitting elements

• terminal (int): An option to print meshing infos in the prompt, value 0 (quiet) or 1 (verbose, default)

Returns:
list[gf.Mesh, int, dict, dict]: The mesh to use with getfem, the dimension, a dict of regions with getfem
indices for dim n and a dict of regions with getfem indices for dim n-1

scrimp.utils.mesh.Interval(parameters={'L': 1.0, 'h': 0.05}, refine=0, terminal=1)
The geometry of a segment (0,L) with mesh size h

• Domain Omega: 1,

• Left boundary Gamma_Left: 10,

• Right boundary Gamma_Right: 11

Args:
• parameters (dict): The dictionary of parameters for the geometry

• refine (int): Ask for iterative refinements by splitting elements

• terminal (int): An option to print meshing infos in the prompt, value 0 (quiet) or 1 (verbose, default)

Returns:
list[gf.Mesh, int, dict, dict]: The mesh to use with getfem, the dimension, a dict of regions with getfem
indices for dim n and a dict of regions with getfem indices for dim n-1

scrimp.utils.mesh.Rectangle(parameters={'L': 2.0, 'h': 0.1, 'l': 1}, refine=0, terminal=1)
The geometry of a Rectangle (0,L)x(0,l) with mesh size h

• Domain Omega: 1,

• Bottom boundary Gamma_Bottom: 10,

• Right boundary Gamma_Right: 11,

• Top boundary Gamma_Top: 12,

• Left boundary Gamma_Left: 13

Args:
• parameters (dict): The dictionary of parameters for the geometry

• refine (int): Ask for iterative refinements by splitting elements

• terminal (int): An option to print meshing infos in the prompt, value 0 (quiet) or 1 (verbose, default)

2.7. Code documentation 61

SCRIMP, Release 1.1

Returns:
list[gf.Mesh, int, dict, dict]: The mesh to use with getfem, the dimension, a dict of regions with getfem
indices for dim n and a dict of regions with getfem indices for dim n-1

scrimp.utils.mesh.built_in_geometries()

A function to get all the infos about available built_in geometries

scrimp.sandbox

The sandbox folder is the recommanded folder to work in.

It already contains the example of the 1D wave equation presented here.

2.7.2 Distributed port-Hamiltonian system

• file: dphs.py

• authors: Giuseppe Ferraro, Ghislain Haine, Florian Monteghetti

• date: 22 nov. 2022

• brief: class for distributed port-Hamiltonian system

class scrimp.dphs.DPHS(basis_field='real')
Bases: object

A generic class handling distributed pHs using the GetFEM tools

This is a wrapper in order to simplify the coding process

Access to fine tunings is preserved as much as possible

F

A PETSc Vec for residual computation

IFunction(TS, t, z, zd, F)
IFunction for the time-resolution of the dphs with PETSc TS fully implicit integrator

Args:
TS (PETSc TS): the PETSc TS object handling time-resolution t (float): time parameter z (PETSc
Vec): the state zd (PETSc Vec): the time-derivative of the state F (PETSc Vec): the rhs vector

IJacobian(TS, t, z, zd, sig, A, P)
IJacobian for the time-resolution of the dphs with PETSc TS fully implicit integrator

Args:
TS (PETSc TS): the PETSc TS object handling time-resolution t (float): time parameter z (PETSc Vec):
the state zd (PETSc Vec): the time-derivative of the state sig (float): a shift-parameter, depends on dt
A (PETSc Mat): the jacobian matrix P:(PETSc Mat) the jacobian matrix to use for pre-conditionning

J

A PETSc Mat for Jacobian computation

add_FEM(fem: FEM)

This function adds a FEM (Finite Element Method) for the variables associated to a port of the dphs

TODO: handle tensor-field

62 Chapter 2. User’s guide

SCRIMP, Release 1.1

Args:
fem (FEM): the FEM to use

add_brick(brick: Brick)
This function adds a brick in the getfem Model thanks to a form in GWFL getfem language

The form may be non-linear

Args:
brick (Brick): the brick

add_control_port(control_port: Control_Port)
This function adds a control port to the dphs

Args:
control_port (Control_Port): the Control Port.

add_costate(costate: CoState)
This function adds a costate to the costate dict of the dphs, then defines and adds the dynamical port gath-
ering the couple (State, CoState).

Args:
costate (CoState): the costate

add_parameter(parameter: Parameter)
This function adds a time-independent (possibly space-varying parameter: x, y and z are the space variables)
associated to a port of the dphs

Args:
parameter (Parameter): the parameter

add_port(port: Port)
This function adds a port to the port dict of the dphs

Args:
port (Port): the port

add_state(state: State)
This functions adds a state to state dict of the dphs.

Args:
state (State): the state

allocate_memory()

Pre-allocate memory for matrices and vectors

assemble_mass()

This function performs the assembly of the bricks dt=True and linear=True and set the PETSc.Mat attribute
mass

assemble_nl_mass()

This function performs the assembly of the bricks dt=True and linear=False and set the PETSc.Mat attribute
nl_mass

assemble_nl_stiffness()

This function performs the assembly of the bricks dt=False and linear=False and set the PETSc.Mat attribute
nl_stiffness

assemble_rhs()

This function performs the assembly of the rhs and set the PETSc.Vec attribute rhs

2.7. Code documentation 63

SCRIMP, Release 1.1

assemble_stiffness()

This function performs the assembly of the bricks dt=False and linear=True and set the PETSc.Mat attribute
stiffness

bricks

The dict of bricks, associating getfem bricks to petsc matrices obtained by the PFEM, store many infos for
display()

buffer

A PETSc Vec buffering computation

compute_Hamiltonian()

Compute each term constituting the Hamiltonian

Wrapper to the function compute of Hamiltonian class

compute_powers()

Compute each power associated to each algebraic port if it is not substituted (because of the parameter-
dependency if it is)

Wrapper to the function compute of Port class (loop on self.ports)

controls

The dict of controls, collecting information about control ports. Also appear in ports entries

costates

The dict of costates, store many infos for display()

disable_all_bricks()

This function disables all bricks in the Model

display(verbose=2)
A method giving infos about the dphs

Args:
• verbose (int): the level of verbosity (defaults to 2)

domain

The domain of a dphs is an object that handle mesh(es) and dict of regions with getfem indices (for each
mesh), useful to define bricks (i.e. forms) in the getfem syntax

enable_all_bricks()

This function enables all bricks in the Model

event(TS, t, z, fvalue)
Check if the time step is not too small

exclude_algebraic_var_from_lte(TS)
Exclude the algebraic variable from the local error troncature in the time-resolution

Args:
TS (PETSc TS): the PETSc TS object handling time-resolution

export_matrices(t=None, state=None, path=None, to='matlab')
TODO:

64 Chapter 2. User’s guide

SCRIMP, Release 1.1

export_to_pv(name_variable, path=None, t='All')
Export the solution to .vtu file(s) (for ParaView), with associated .pvd if t=’All’

name_variable (str): the variable to export path (str): the path for the output file (default: in the outputs/pv
folder next to your .py file) t (Numpy array): the time values of extraction (default: All the stored times),
All, Init, Final

get_Hamiltonian()

This function returns the Hamiltonian in function of time

Returns:
numpy array: time array of the values of the Hamiltonian.

get_cleared_TS_options()

To ensure a safe database for the PETSc TS environment

get_quantity(expression, region=-1, order=0, mesh_id=0)→ list
This functions computes the integral over region of the expression at each time step

Args:
• expression (str): the GFWL expression to compute

• region (int, optional): the id of the region (defaults to -1)

• order (int, optional): the order of the quantity to be computed (0: scalar, 1: vector, 2: tensor)
(defaults to 0)

• mesh_id (int, optional): the id of the mesh (defaults to 0)

Returns:
list(float): a list of float at each time step (according to self.solution[“t”])

get_solution(name_variable)→ list
This functions is useful (especially in 1D) to handle post-processing by extracting the variable of interest
from the PETSc Vec self.solution[“z”]

Args:
name_variable (str): the name of the variable to extract

Returns:
list(numpy array): a list of numpy array (dofs of name_variable) at each time step (according to
self.solution[“t”])

gf_model

A getfem Model object that is use as core for the dphs

hamiltonian

The Hamiltonian of a dphs is a list of dict containing several useful information for each term

init_parameter(name, name_port)
This function initializes the parameter name in the FEM of the port name_port of the dphs and adds it to
the getfem Model

Args:
name (str): the name of the parameter as defined with add_parameter() name_port (str): the name of
the port where the parameter belongs

init_step()

Perform a first initial step with a pseudo bdf

It needs set_time_scheme(init_step=True)

2.7. Code documentation 65

SCRIMP, Release 1.1

initial_value_set

To check if the initial values have been set before time-resolution

linear_mass

To speed-up IFunction calls for linear systems

mass

Linear mass matrix of the system in PETSc CSR format

monitor(TS, i, t, z, dt_save=1.0, t_0=0.0, initial_step=False)
Monitor to use during iterations of time-integration at each successful time step

Args:
TS (PETSc TS): the PETSc TS object handling time-resolution i (int): the iteration in the time-
resolution t (float): time parameter z (PETSc Vec): the state dt_save (float): save the solution each
dt_save s (different from the time-step dt used for resolution) t_0 (float): the initial time initial_step
(bool): True if this is the initial consistency step (default=`False`)

nl_mass

Non-linear mass matrix of the system in PETSc CSR format

nl_stiffness

Non-linear stiffness matrix of the system in PETSc CSR format

plot_Hamiltonian(with_powers=True, save_figure=False, filename='Hamiltonian.png')
Plot each term constituting the Hamiltonian and the Hamiltonian

May include the power terms, i.e. the sum over [t_0, t_f] of the flow/effort product of algebraic ports

Args:
• with_powers (bool): if True (default), the plot will also contains the power of each algebraic ports

• save_figure (bool): if ‘True’ (defaults: False), save the plot

• filename (str): the name of the file where the plot is saved (defaults: Hamiltonian.png)

plot_powers(ax=None, HamTot=None)
Plot each power associated to each algebraic port

The time integration for visual comparison with the Hamiltonian is done using a midpoint method

If HamTot is provided, a Balance showing structure-preserving property is shown: must be constant on the
plot

ax (Matplotlib axis): the gca of matplotlib when this function is called from plot_Hamiltonian() HamTot
(Numpy array): the values of the Hamiltonian over time

ports

The dict of ports, store many infos for display()

postevent(TS, event, t, z, forward)
If the time step is too small, ask for the end of the simulation

powers_computed

To check if the powers have been computed

rhs

rhs of the system in PETSc Vec

66 Chapter 2. User’s guide

SCRIMP, Release 1.1

set_control(name, expression)
This function applies a source term expression to the control port name

Args:
name (str): the name of the port expression (str): the expression of the source term

set_domain(domain: Domain)
This function sets a domain for the dphs.

TODO: If not built_in, given from a script ‘name.py’ or a .geo file with args in the dict ‘parameters’ should
be able to handle several meshes e.g. for interconnections, hence the list type

Args:
name (str): id of the domain, either for built in, or user-defined auxiliary script parameters (dict):
parameters for the construction, either for built in, or user-defined auxiliary script

set_from_vector(name_variable, x)
This function sets the value of the variable name_variable in the getfem Model from a numpy vector

Args:
name_variable (str): the name of the variable to set x (numpy array): the vector of values

set_initial_value(name_variable, expression)
This function sets the initial value of the variable name_variable of the dphs from an expression

Args:
name_variable (str): the name of the variable to set expression (str): the expression of the function to
use

set_linear_flags()

This function set the “linear flags” to speed-up IFunction calls for linear systems.

set_time_scheme(**kwargs)
Allows an easy setting of the PETSc TS environment

Args:
**kwargs: PETSc TS options and more (see examples)

solution

Will contain both time t and solution z

solve()

Perform the time-resolution of the dphs thanks to PETSc TS

The options database is set in the time_scheme attribute

solve_done

To check if the system has been solved

spy_Dirac(t=None, state=None)
!TO DO: improve a lot with position of bricks and no constitutive relations!!!

states

The dict of states, store many infos for display()

stiffness

Linear stiffness matrix of the system in PETSc CSR format

stop_TS

To stop TS integration by keeping already computed timesteps if one step fails

2.7. Code documentation 67

SCRIMP, Release 1.1

tangent_mass

Tangent (non-linear + linear) mass matrix of the system in PETSc CSR format

tangent_stiffness

Tangent (non-linear + linear) stiffness matrix of the system in PETSc CSR format

ts_start

For monitoring time in TS resolution

2.7.3 Domain

• file: domain.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 31 may 2023

• brief: class for domain object

class scrimp.domain.Domain(name: str, parameters: dict, refine=0, terminal=1)
Bases: object

A class handling meshes and indices for regions

Lists are used to handle interconnection of pHs, allowing for several meshes in the dpHs.

display()

A method giving infos about the domain

get_boundaries()→ list
This function gets the list of the bounderies for the domain.

Returns:
list: list of the boundaries for the domain

get_dim()→ list
This function gets the list of dimensions for the domain.

Returns:
list: list of dimensions for the domain

get_isSet()→ bool
This function gets the boolean vale indicating wether if a Mesh has been set for the domain or not.

Returns:
bool: boolean indicating if a Mesh has been set

get_mesh()→ list
This function gets the list of mesh for the domain.

Returns:
list: list of mesh for the domain

get_name()→ str
This function get the name of the domain.

Returns:
str: name of the domain.

68 Chapter 2. User’s guide

SCRIMP, Release 1.1

get_subdomains()→ list
This function gets the list of subdomains for the domain.

Returns:
list: list of the subdomains for the domain

set_mim_auto()

Define the integration method to a default choice

2.7.4 Hamiltonian / Term

• file: hamiltonian.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 31 may 2023

• brief: class for hamiltonian and term objects

class scrimp.hamiltonian.Hamiltonian(name: str)
Bases: object

This class defines the Hamiltoninan.

add_term(term: Term)

This function adds a term to the term list of the Hamiltonian

Args:
term (Term): term for the Hamiltonian

compute(solution: dict, gf_model: getfem.Model, domain: Domain)
Compute each term constituting the Hamiltonian

Args:
• solutions (dict): The solution of the dphs

• gf_model (GetFEM Model): The model getfem of the dphs

• domain (Domain): The domain of the dphs

get_is_computed()→ bool
This function returns True if the Hamiltonian is computed, False otherwise.

Returns:
bool: flag that indicates if the hamiltonian terms have been computed

get_name()→ str
This function returns the name of the Hamiltonion.

Args:
name (str): name of the Hamiltonian

get_terms()→ list
This function returns a copy of the list of terms of the Hamiltonian.

Returns:
list: list of terms of the Hamiltonian.

set_is_computed()

This function sets the Hamiltonian as computed.

2.7. Code documentation 69

SCRIMP, Release 1.1

set_name(name: str)
This function set the name for the Hamiltonion. For plotting purposes.

Args:
name (str): name of the Hamiltonian

class scrimp.hamiltonian.Term(description: str, expression: str, regions: str, mesh_id: int = 0)
Bases: object

This class defines a term for the Hamiltoninan.

get_description()→ str
This function gets the description of the term.

Returns:
str: description of the term

get_expression()→ str
This function gets the matematical expression of the term.

Returns:
str: matematical expression of the term.

get_mesh_id()→ int
This function gets the mesh id of the mesh where the regions belong to..

Returns:
int: the mesh id of the mesh where the regions belong to.

get_regions()→ str
This function gets the regions of the term.

Returns:
str: regions of the termthe region IDs of the mesh where the expression has to be evaluated

get_values()→ list
This function gets the valeus of the term.

Returns:
list: list of values of the term

set_value(value)
This function sets a value for the term.

Args:
value : a value for the term

2.7.5 Port / Parameter

• file: port.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 31 may 2023

• brief: class for port and parameter objects

class scrimp.port.Parameter(name: str, description: str, kind: str, expression: str, name_port: str)
Bases: object

This class describes the Parameter for a Port.

70 Chapter 2. User’s guide

SCRIMP, Release 1.1

get_description()→ str
This function gets the description of the parameter.

Returns:
str: description of the parameter

get_expression()→ str
This function gets the matematical expression of the parameter.

Returns:
str: matematical expression of the parameter.

get_kind()→ str
This function gets the kind of the parameter.

Returns:
str: kind of the parameter

get_name()→ str
This function gets the name of the parameter.

Returns:
str: name of the parameter

get_name_port()→ str
This function gets the name of the port whose the parameter is bounded.

Returns:
str: name of the port whose the parameter is bounded.

class scrimp.port.Port(name: str, flow: str, effort: str, kind: str, mesh_id: int = 0, algebraic: bool = True,
substituted: bool = False, dissipative: bool = True, region: int = None)

Bases: object

A class to handle a port of a dpHs

It is mainly constituted of a flow variable, an effort variable, and a fem.

add_parameter(parameter: Parameter)→ bool
This function adds a Parameter object that is acting on the variables of the port.

Args:
parameter (Parameter): parameter for the port.:

Returns:
bool: True if the insertion has been complete correctly, False otherwise

compute(solution: dict, gf_model: getfem.Model, domain: Domain)
Compute the power flowing through the algebraic port if it is not substituted (because of the parameter-
dependency if it is)

Args:
• solutions (dict): The solution of the dphs

• gf_model (GetFEM Model): The model getfem of the dphs

• domain (Domain): The domain of the dphs

2.7. Code documentation 71

SCRIMP, Release 1.1

get_algebraic()→ bool

This function gets boolean value of the algebraic parameter of the port.
If True, the equation associated to this port is algebraic, otherwise dynamic and the flow is derivated
in time at resoltuion

Returns:
bool: value of the algebraic parameter

get_dissipative()→ bool
This function gets boolean value for the dissipativeness flag of the port. If True, the power associated to
the port gets a negative sign

Returns:
bool: value of the dissipativeness flag

get_effort()→ str
This function gets the name of the effort variable.

Returns:
str: name of the effort variable

get_fem()

This function returns the fetfem Meshfem object to discretize the port.

Returns:
type: the getfem Meshfem object to discretize the port

get_flow()→ str
This function gets the name of the flow variable.

Returns:
str: name of the flow variable

get_isSet()→ bool
This funcion gets the boolean value that indicates wether the port is set or not.

Returns:
bool: value that indicates if the port is set.

get_is_computed()→ bool
This function returns True if the power of the Port is computed, False otherwise.

Returns:
bool: flag that indicates if the power flowing through the Port has been computed

get_kind()→ str
This function gets the type of the variables (e.g. scalar-field)

Returns:
str: type of the variables (e.g. scalar-field)

get_mesh_id()→ int
This function gets he id of the mesh where the variables belong

Returns:
int: The id of the mesh where the variables belong

get_name()→ str
This function gets the name of the port.

72 Chapter 2. User’s guide

SCRIMP, Release 1.1

Returns:
str: name of the port

get_parameter(name)→ Parameter
This function return the parameter with a specific name.

Args:
name (str): the name of the parameter of interest

Returns:
Parameter: the desired parameter, None otherwise

get_parameters()→ list
This function returns the list of all the parameters inserted for the port.

Returns:
list(Parameter): list of all the parameters inserted for the port

get_power()

Gives access to the computed power of the port.

get_region()→ int
This function gets the region of the mesh. If any, the int of the region of mesh_id where the flow/effort
variables belong

Returns:
int: region of the mesh

get_substituted()→ bool
This function gets boolean value of the subtituted parameter. If True, the getfem `Model will only have an
unknown variable for the effort: the constitutive relation is substituted into the mass matrix on the flow side

Returns:
bool: value of the subtituted parameter

init_parameter(name: str, expression: str)
This function sets the chosen parameter object for the current port by initialization in the FE basis.

Args:
name (str): the name of the parameter object expression (str):

Returns:
out (numpy array): the evaluation of the parameter in the fem of the port.

set_fem(fem: FEM)

This function sets the Meshfem getfem object defining the finite element method to use to discretize the
port.

Args:
fem (FEM): the FEM object to use

set_isSet()→ bool
This funcion sets the boolean value that indicates the port is set.

Returns:
bool: value that indicates if the port is set.

set_is_computed()

This function sets the power of the Port as computed.

set_power(power)
This function sets the power along time of the Port.

2.7. Code documentation 73

SCRIMP, Release 1.1

2.7.6 State

• file: state.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 31 may 2023

• brief: class for state object

class scrimp.state.State(name: str, description: str, kind: str, region: int = None, mesh_id: int = 0)
Bases: object

This class defines a State.

get_costate()→ object
This function gets the Co-state of the state

Returns:
object: Costate

get_description()→ str
This function gets the description of the State.

Returns:
str: description of the state

get_kind()→ str
This function gets the kind of the State.

Returns:
str: kind of the state

get_mesh_id()→ int
This funtion gets the integer number of the mesh of the state.

Returns:
int: id of the mesh

get_name()→ str
This function gets the name of the State.

Returns:
str: name of the state

get_port()→ object
This function gets the port of the state

Returns:
object: Port

get_region()→ int
This function gets the integer number of the region of the state.

Returns:
int: region of the State.

set_costate(costate)
This function sets a Co-state to the State.

Args:
costate (Costate): Co-state

74 Chapter 2. User’s guide

SCRIMP, Release 1.1

set_port(port)
This function sets a port to the state.

Args:
port (Port): Port

2.7.7 Co-state

• file: costate.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 31 may 2023

• brief: class for co-state object

class scrimp.costate.CoState(name: str, description: str, state: State, substituted=False)
Bases: State

This class defines a Co-State.

get_state()→ object
This function gets the State of the Costate.

Returns:
object: State

get_substituted()→ bool
This function gets the boolean indicating wether to substitute the variable or not.

Returns:
bool: boolean indicating wether to substitute the variable

2.7.8 Control

• file: control.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 31 may 2023

• brief: class for control port object

class scrimp.control.Control_Port(name: str, name_control: str, description_control: str,
name_observation: str, description_observation: str, kind: str, region:
int = None, position: str = 'effort', mesh_id: int = 0)

Bases: Port

This class defines a Control Port.

get_description_control()→ str
This function gets the description of the control.

Returns:
str: the description of the control

2.7. Code documentation 75

SCRIMP, Release 1.1

get_description_observation()→ str
This function gets the description of the observation.

Returns:
str: the description of the observation

get_name_control()→ str
This function gets the name of the control.

Returns:
str: the name of the control

get_name_obervation()→ str
This function gets the name of the obervation.

Returns:
str: the name of the observation

get_position()→ str
This function gets the position of the control in the Dirac structure.

Returns:
str: the position of the control

2.7.9 FEM

• file: fem.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 31 may 2023

• brief: class for fem object

class scrimp.fem.FEM(name, order, FEM='CG')
Bases: object

This class defines what is a FEM object in SCRIMP.

An negative order allows to access to GetFEM syntax for the FEM, e.g., by setting FEM=”FEM_HERMITE(2)”
for Hermite FE in dimension 2.

get_dim()→ int
This function gets the dimension of the FEM.

Returns:
int: the dimension of FEM

get_fem()

This function returns the the FEM of getfem.

Returns:
gf.MeshFem: the FEM

get_isSet()→ bool
This function gets the flag to know if the FEM are set in getfem.

Returns:
bool: the flag to assert setting in getfem

76 Chapter 2. User’s guide

SCRIMP, Release 1.1

get_mesh()

This function gets the mesh of the FEM

Returns:
mesh: the mesh of FEM

get_name()→ str
This function gets the name of the FEM.

Returns:
str: name of the FEM

get_order()→ int
This function gets the order for the FEM.

Returns:
int: dim of the flow FEM

get_type()→ str
This function gets the tyoe of the FEM.

Returns:
str: type of the FEM

set_dim(dim: int)
This function sets the dimension for the FEM.

Args:
dim (int): the dimension fro the FEM

set_fem()

This function sets the Meshfem getfem object defining the finite element method to use to discretize the
port.

set_mesh(mesh)
This function sets the Meshfem getfem object FEM object of scrimp.

Args:
mesh (Mesh): the mesh where the FE are define

2.7.10 Brick

• file: brick.py

• authors: Giuseppe Ferraro, Ghislain Haine

• date: 31 may 2023

• brief: class for brick object

class scrimp.brick.Brick(name: str, form: str, regions: list, linear: bool = True, dt: bool = False, position:
str = 'constitutive', explicit: bool = False, mesh_id: int = 0)

Bases: object

This class defines a Brick.

add_id_brick_to_list(id_brick: int)
This function adds a brick ID to the brick ID list.

Args:
id_brick (int): the id of the brick

2.7. Code documentation 77

SCRIMP, Release 1.1

disable_id_bricks(gf_model)
This function disable the brick in the getfem model.

enable_id_bricks(gf_model)
This function enable the brick in the getfem model.

get_dt()→ bool
This function returns the boolean that defines wether the matrices applied to time-derivative of a variable
or not.

Returns:
bool: parameter to help easy identification of matrices applied to time-derivative of a variable (e.g.
mass matrices).

get_explicit()→ bool
This function returns the boolean that defines wether the brick is explicit or not.

Returns:
bool: parameter to help easy identification of explicit bricks.

get_form()→ str
This function returns the form of the brick.

Returns:
str: the form in GWFL getfem language.

get_id_bricks()→ list
This function returns the list of integers related to the ids of the bricks.

Returns:
list: the list of integers related to the ids of the bricks.

get_linear()→ bool
This function returns the boolean that defines wether the brick is linear or not.

Returns:
bool: parameter to help easy identification of linear bricks.

get_mesh_id()→ int
This function returns the ID of the brick.

Returns:
int: the id of the mesh where the form applies.

get_name()→ str
This function returns the name of the brick.

Returns:
str: the name of the brick, will be used mainly for plotting purpose

get_position()→ int
This function returns the id of the position where the form of the brick applies.

Returns:
int: the id of the mesh where the form applies. Defaults to 0.

get_regions()→ list
This function returns the regions of the brick.

Returns:
list: the regions of mesh where the form applies.

78 Chapter 2. User’s guide

CHAPTER

THREE

CREDITS

3.1 Development

Please report bug at: ghislain.haine@isae.fr, Giuseppe.Ferrarro@isae-supaero.fr

Current developers: Antoine Bendhimerad-Hohl, Giuseppe Ferraro, Michel Fournié, Ghislain Haine

Past: Andrea Brugnoli, Melvin Chopin, Florian Monteghetti, Anass Serhani, Xavier Vasseur

Please read the LICENSE

3.2 Funding

• ANR Project IMPACTS – IMplicit Port-hAmiltonian ConTrol Systems

• AID School Project FAMAS – Fast & Accurate MAxwell Solver

• ANR-DFG Project INFIDHEM – INterconnected inFinite-Dimensional systems for HEterogeneous Media

3.3 Third-party

The two main libraries used as core for SCRIMP are:

• GetFEM – An open-source finite element library

• PETSc – The Portable, Extensible Toolkit for Scientific Computation

Meshing is facilitated using (although not mandatory) GMSH – A three-dimensional finite element mesh generator

Post-processing visualization is encouraged via ParaView – Post-processing visualization engine

and finally, SCRIMP also needs for some routines

• matplotlib – Visualization with Python

• numpy – A well-known package for scientific computing

One of our choice for IDE is Spyder – A scientific Python development environment

79

mailto:ghislain.haine@isae.fr
mailto:Giuseppe.Ferrarro@isae-supaero.fr
https://github.com/g-haine/scrimp/blob/master/LICENSE
https://impacts.ens2m.fr/
https://www.defense.gouv.fr/aid
http://websites.isae.fr/infidhem
https://getfem.org/
https://petsc.org/release/
https://gmsh.info/
https://www.paraview.org/
https://matplotlib.org/
https://numpy.org/
https://www.spyder-ide.org/

SCRIMP, Release 1.1

3.4 How to cite SCRIMP?

Brugnoli, Andrea and Haine, Ghislain and Serhani, Anass and Vasseur, Xavier. Numerical Approximation of Port-
Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control. (2021) Journal of Applied Mathe-
matics and Physics, 09 (06). 1278-1321.

@article{Brugnoli2021,
author = {Brugnoli, Andrea and Haine, Ghislain and Serhani, Anass and Vasseur, Xavier},
title = { {Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or␣
→˓Parabolic PDEs with Boundary Control} },
journal = {Journal of Applied Mathematics and Physics},
volume = {09},
issue = {06},
pages = {1278--1321},
year = {2021}
}

80 Chapter 3. Credits

PYTHON MODULE INDEX

e
examples.heat, 26
examples.heat_wave, 38
examples.shallow_water, 46
examples.wave, 12
examples.wave_coenergy, 33
examples.wave_dissipative, 20

s
scrimp.brick, 77
scrimp.control, 75
scrimp.costate, 75
scrimp.domain, 68
scrimp.dphs, 62
scrimp.fem, 76
scrimp.hamiltonian, 69
scrimp.port, 70
scrimp.state, 74
scrimp.utils.config, 59
scrimp.utils.linalg, 59
scrimp.utils.mesh, 60

81

SCRIMP, Release 1.1

82 Python Module Index

INDEX

A
add_brick() (scrimp.dphs.DPHS method), 63
add_control_port() (scrimp.dphs.DPHS method), 63
add_costate() (scrimp.dphs.DPHS method), 63
add_FEM() (scrimp.dphs.DPHS method), 62
add_id_brick_to_list() (scrimp.brick.Brick

method), 77
add_parameter() (scrimp.dphs.DPHS method), 63
add_parameter() (scrimp.port.Port method), 71
add_port() (scrimp.dphs.DPHS method), 63
add_state() (scrimp.dphs.DPHS method), 63
add_term() (scrimp.hamiltonian.Hamiltonian method),

69
allocate_memory() (scrimp.dphs.DPHS method), 63
assemble_mass() (scrimp.dphs.DPHS method), 63
assemble_nl_mass() (scrimp.dphs.DPHS method), 63
assemble_nl_stiffness() (scrimp.dphs.DPHS

method), 63
assemble_rhs() (scrimp.dphs.DPHS method), 63
assemble_stiffness() (scrimp.dphs.DPHS method),

63

B
Ball() (in module scrimp.utils.mesh), 60
Brick (class in scrimp.brick), 77
bricks (scrimp.dphs.DPHS attribute), 64
buffer (scrimp.dphs.DPHS attribute), 64
built_in_geometries() (in module

scrimp.utils.mesh), 62

C
compute() (scrimp.hamiltonian.Hamiltonian method),

69
compute() (scrimp.port.Port method), 71
compute_Hamiltonian() (scrimp.dphs.DPHS method),

64
compute_powers() (scrimp.dphs.DPHS method), 64
Concentric() (in module scrimp.utils.mesh), 60
Control_Port (class in scrimp.control), 75
controls (scrimp.dphs.DPHS attribute), 64
convert_gmm_to_petsc() (in module

scrimp.utils.linalg), 59

convert_PETSc_to_scipy() (in module
scrimp.utils.linalg), 59

CoState (class in scrimp.costate), 75
costates (scrimp.dphs.DPHS attribute), 64

D
disable_all_bricks() (scrimp.dphs.DPHS method),

64
disable_id_bricks() (scrimp.brick.Brick method), 78
Disk() (in module scrimp.utils.mesh), 61
display() (scrimp.domain.Domain method), 68
display() (scrimp.dphs.DPHS method), 64
Domain (class in scrimp.domain), 68
domain (scrimp.dphs.DPHS attribute), 64
DPHS (class in scrimp.dphs), 62

E
enable_all_bricks() (scrimp.dphs.DPHS method),

64
enable_id_bricks() (scrimp.brick.Brick method), 78
event() (scrimp.dphs.DPHS method), 64
examples.heat

module, 26
examples.heat_wave

module, 38
examples.shallow_water

module, 46
examples.wave

module, 12
examples.wave_coenergy

module, 33
examples.wave_dissipative

module, 20
exclude_algebraic_var_from_lte()

(scrimp.dphs.DPHS method), 64
export_matrices() (scrimp.dphs.DPHS method), 64
export_to_pv() (scrimp.dphs.DPHS method), 64
extract_gmm_to_scipy() (in module

scrimp.utils.linalg), 60

F
F (scrimp.dphs.DPHS attribute), 62

83

SCRIMP, Release 1.1

FEM (class in scrimp.fem), 76

G
get_algebraic() (scrimp.port.Port method), 71
get_boundaries() (scrimp.domain.Domain method),

68
get_cleared_TS_options() (scrimp.dphs.DPHS

method), 65
get_costate() (scrimp.state.State method), 74
get_description() (scrimp.hamiltonian.Term

method), 70
get_description() (scrimp.port.Parameter method),

70
get_description() (scrimp.state.State method), 74
get_description_control()

(scrimp.control.Control_Port method), 75
get_description_observation()

(scrimp.control.Control_Port method), 75
get_dim() (scrimp.domain.Domain method), 68
get_dim() (scrimp.fem.FEM method), 76
get_dissipative() (scrimp.port.Port method), 72
get_dt() (scrimp.brick.Brick method), 78
get_effort() (scrimp.port.Port method), 72
get_explicit() (scrimp.brick.Brick method), 78
get_expression() (scrimp.hamiltonian.Term method),

70
get_expression() (scrimp.port.Parameter method), 71
get_fem() (scrimp.fem.FEM method), 76
get_fem() (scrimp.port.Port method), 72
get_flow() (scrimp.port.Port method), 72
get_form() (scrimp.brick.Brick method), 78
get_Hamiltonian() (scrimp.dphs.DPHS method), 65
get_id_bricks() (scrimp.brick.Brick method), 78
get_is_computed() (scrimp.hamiltonian.Hamiltonian

method), 69
get_is_computed() (scrimp.port.Port method), 72
get_isSet() (scrimp.domain.Domain method), 68
get_isSet() (scrimp.fem.FEM method), 76
get_isSet() (scrimp.port.Port method), 72
get_kind() (scrimp.port.Parameter method), 71
get_kind() (scrimp.port.Port method), 72
get_kind() (scrimp.state.State method), 74
get_linear() (scrimp.brick.Brick method), 78
get_mesh() (scrimp.domain.Domain method), 68
get_mesh() (scrimp.fem.FEM method), 76
get_mesh_id() (scrimp.brick.Brick method), 78
get_mesh_id() (scrimp.hamiltonian.Term method), 70
get_mesh_id() (scrimp.port.Port method), 72
get_mesh_id() (scrimp.state.State method), 74
get_name() (scrimp.brick.Brick method), 78
get_name() (scrimp.domain.Domain method), 68
get_name() (scrimp.fem.FEM method), 77
get_name() (scrimp.hamiltonian.Hamiltonian method),

69

get_name() (scrimp.port.Parameter method), 71
get_name() (scrimp.port.Port method), 72
get_name() (scrimp.state.State method), 74
get_name_control() (scrimp.control.Control_Port

method), 76
get_name_obervation() (scrimp.control.Control_Port

method), 76
get_name_port() (scrimp.port.Parameter method), 71
get_order() (scrimp.fem.FEM method), 77
get_parameter() (scrimp.port.Port method), 73
get_parameters() (scrimp.port.Port method), 73
get_port() (scrimp.state.State method), 74
get_position() (scrimp.brick.Brick method), 78
get_position() (scrimp.control.Control_Port method),

76
get_power() (scrimp.port.Port method), 73
get_quantity() (scrimp.dphs.DPHS method), 65
get_region() (scrimp.port.Port method), 73
get_region() (scrimp.state.State method), 74
get_regions() (scrimp.brick.Brick method), 78
get_regions() (scrimp.hamiltonian.Term method), 70
get_solution() (scrimp.dphs.DPHS method), 65
get_state() (scrimp.costate.CoState method), 75
get_subdomains() (scrimp.domain.Domain method),

68
get_substituted() (scrimp.costate.CoState method),

75
get_substituted() (scrimp.port.Port method), 73
get_terms() (scrimp.hamiltonian.Hamiltonian

method), 69
get_type() (scrimp.fem.FEM method), 77
get_values() (scrimp.hamiltonian.Term method), 70
gf_model (scrimp.dphs.DPHS attribute), 65

H
Hamiltonian (class in scrimp.hamiltonian), 69
hamiltonian (scrimp.dphs.DPHS attribute), 65
heat_eq() (in module examples.heat), 26
heat_wave_eq() (in module examples.heat_wave), 38

I
IFunction() (scrimp.dphs.DPHS method), 62
IJacobian() (scrimp.dphs.DPHS method), 62
init_parameter() (scrimp.dphs.DPHS method), 65
init_parameter() (scrimp.port.Port method), 73
init_step() (scrimp.dphs.DPHS method), 65
initial_value_set (scrimp.dphs.DPHS attribute), 65
Interval() (in module scrimp.utils.mesh), 61

J
J (scrimp.dphs.DPHS attribute), 62

L
linear_mass (scrimp.dphs.DPHS attribute), 66

84 Index

SCRIMP, Release 1.1

M
mass (scrimp.dphs.DPHS attribute), 66
module

examples.heat, 26
examples.heat_wave, 38
examples.shallow_water, 46
examples.wave, 12
examples.wave_coenergy, 33
examples.wave_dissipative, 20
scrimp.brick, 77
scrimp.control, 75
scrimp.costate, 75
scrimp.domain, 68
scrimp.dphs, 62
scrimp.fem, 76
scrimp.hamiltonian, 69
scrimp.port, 70
scrimp.state, 74
scrimp.utils.config, 59
scrimp.utils.linalg, 59
scrimp.utils.mesh, 60

monitor() (scrimp.dphs.DPHS method), 66

N
nl_mass (scrimp.dphs.DPHS attribute), 66
nl_stiffness (scrimp.dphs.DPHS attribute), 66

P
Parameter (class in scrimp.port), 70
plot_Hamiltonian() (scrimp.dphs.DPHS method), 66
plot_powers() (scrimp.dphs.DPHS method), 66
Port (class in scrimp.port), 71
ports (scrimp.dphs.DPHS attribute), 66
postevent() (scrimp.dphs.DPHS method), 66
powers_computed (scrimp.dphs.DPHS attribute), 66

R
Rectangle() (in module scrimp.utils.mesh), 61
rhs (scrimp.dphs.DPHS attribute), 66

S
scrimp.brick

module, 77
scrimp.control

module, 75
scrimp.costate

module, 75
scrimp.domain

module, 68
scrimp.dphs

module, 62
scrimp.fem

module, 76

scrimp.hamiltonian
module, 69

scrimp.port
module, 70

scrimp.state
module, 74

scrimp.utils.config
module, 59

scrimp.utils.linalg
module, 59

scrimp.utils.mesh
module, 60

set_control() (scrimp.dphs.DPHS method), 66
set_costate() (scrimp.state.State method), 74
set_dim() (scrimp.fem.FEM method), 77
set_domain() (scrimp.dphs.DPHS method), 67
set_fem() (scrimp.fem.FEM method), 77
set_fem() (scrimp.port.Port method), 73
set_from_vector() (scrimp.dphs.DPHS method), 67
set_initial_value() (scrimp.dphs.DPHS method),

67
set_is_computed() (scrimp.hamiltonian.Hamiltonian

method), 69
set_is_computed() (scrimp.port.Port method), 73
set_isSet() (scrimp.port.Port method), 73
set_linear_flags() (scrimp.dphs.DPHS method), 67
set_mesh() (scrimp.fem.FEM method), 77
set_mim_auto() (scrimp.domain.Domain method), 69
set_name() (scrimp.hamiltonian.Hamiltonian method),

69
set_paths() (in module scrimp.utils.config), 59
set_port() (scrimp.state.State method), 74
set_power() (scrimp.port.Port method), 73
set_time_scheme() (scrimp.dphs.DPHS method), 67
set_value() (scrimp.hamiltonian.Term method), 70
set_verbose() (in module scrimp.utils.config), 59
set_verbose_gf() (in module scrimp.utils.config), 59
shallow_water_eq() (in module exam-

ples.shallow_water), 46
solution (scrimp.dphs.DPHS attribute), 67
solve() (scrimp.dphs.DPHS method), 67
solve_done (scrimp.dphs.DPHS attribute), 67
spy_Dirac() (scrimp.dphs.DPHS method), 67
State (class in scrimp.state), 74
states (scrimp.dphs.DPHS attribute), 67
stiffness (scrimp.dphs.DPHS attribute), 67
stop_TS (scrimp.dphs.DPHS attribute), 67

T
tangent_mass (scrimp.dphs.DPHS attribute), 67
tangent_stiffness (scrimp.dphs.DPHS attribute), 68
Term (class in scrimp.hamiltonian), 70
ts_start (scrimp.dphs.DPHS attribute), 68

Index 85

SCRIMP, Release 1.1

W
wave_coenergy_eq() (in module exam-

ples.wave_coenergy), 33
wave_eq() (in module examples.wave), 12
wave_eq() (in module examples.wave_dissipative), 20

86 Index

	What is SCRIMP?
	Port-Hamiltonian systems
	What are they?
	The Partitioned Finite Element Method

	Coding philosophy

	User’s guide
	How to install
	Anaconda
	Tests
	Code structure
	Documentation

	Getting started
	Port-Hamiltonian framework
	Structure-preserving discretization
	Coding within SCRIMP

	Examples
	The wave equation
	Setting
	Port-Hamiltonian framework
	Structure-preserving discretization
	Simulation
	Adding Damping to the dphs
	Another simulation

	The heat equation
	Setting
	Port-Hamiltonian framework
	Structure-preserving discretization
	Simulation

	Another wave equation
	Setting
	Substitutions
	Simulation

	Heat wave coupling
	Setting
	Port-Hamiltonian framework
	Structure-preserving discretization
	Simulation

	The shallow water equation
	Setting
	Port-Hamiltonian framework
	Structure-preserving discretization
	Simulation

	Notebooks
	Install jupyter
	Run jupyter

	Graphical User Interface
	Bibliography
	Articles
	Book Chapters
	Proceedings

	Code documentation
	Folders
	scrimp.examples
	Wave
	Heat
	Heat-Wave coupling
	Shallow water

	scrimp.utils
	Config
	Linear algebra
	Mesh

	scrimp.sandbox

	Distributed port-Hamiltonian system
	Domain
	Hamiltonian / Term
	Port / Parameter
	State
	Co-state
	Control
	FEM
	Brick

	Credits
	Development
	Funding
	Third-party
	How to cite SCRIMP?

	Python Module Index
	Index

