Stochastic stabilization based on kinetic-potential energy shaping for stochastic mechanical port-Hamiltonian systems
Authors
Abstract
This paper extends a kinetic-potential energy shaping method to stochastic mechanical port-Hamiltonian systems. The kinetic-potential energy shaping brings a new class of Lyapunov function candidates involving a cross term of the position and the momentum without solving partial differential equations for deterministic port-Hamiltonian systems. However, the conventional kinetic-potential energy shaping does not necessarily work for stochastic port-Hamiltonian systems due to energy increase by stochastic noise. Therefore, we first provide a modification properly compensated by using stochastic generalized canonical transformations. Then, two stochastic stability results are presented. The first result shows a necessary condition for stochastic asymptotic stability for an equilibrium state. The other one shows a necessary condition for stochastic bounded stability for a target state, which is not necessarily an equilibrium point. GRAPHICAL
Citation
- Journal: Advanced Robotics
- Year: 2024
- Volume: 38
- Issue: 9-10
- Pages: 610–618
- Publisher: Informa UK Limited
- DOI: 10.1080/01691864.2024.2340543
BibTeX
@article{Satoh_2024,
title={{Stochastic stabilization based on kinetic-potential energy shaping for stochastic mechanical port-Hamiltonian systems}},
volume={38},
ISSN={1568-5535},
DOI={10.1080/01691864.2024.2340543},
number={9–10},
journal={Advanced Robotics},
publisher={Informa UK Limited},
author={Satoh, Satoshi and Fujimoto, Kenji},
year={2024},
pages={610--618}
}
References
- Maschke B van der Schaft AJ. Port-controlled Hamiltonian systems: modelling origins and system theoretic properties. In: Proceedings 2nd IFAC Symposium on Nonlinear Control Systems; 1992. p. 282–288.
- Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control vol. 103 119–125 (1981) – 10.1115/1.3139651
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- IEEE Control Systems Letters. doi:10.1109/lcsys.7782633 – 10.1109/lcsys.7782633
- IEEE Control Systems Letters. doi:10.1109/lcsys.7782633 – 10.1109/lcsys.7782633
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica vol. 97 134–142 (2018) – 10.1016/j.automatica.2018.07.031
- Cordoni, F. G., Di Persio, L. & Muradore, R. Discrete stochastic port-Hamiltonian systems. Automatica vol. 137 110122 (2022) – 10.1016/j.automatica.2021.110122
- International Journal of Robust and Nonlinear Control vol. 27 (2017) – 10.1002/rnc.v27.17
- Tabuchi I. Tabuchi I, Satoh S, Yamada K. Formation tracking control using generalized canonical transformations and sliding mode control of port-Hamiltonian systems. J Evolving Space Activities. 2024. (2024)
- Satoh, S. & Saeki, M. Bounded stabilisation of stochastic port-Hamiltonian systems. International Journal of Control vol. 87 1573–1582 (2014) – 10.1080/00207179.2014.880127
- Satoh, S. & Saeki, M. Bounded Stability of Nonlinear Stochastic Systems. SICE Journal of Control, Measurement, and System Integration vol. 8 181–187 (2015) – 10.9746/jcmsi.8.181
- NISHISHITA, T., SATOH, S. & YAMADA, K. Stochastic Bounded Stability in the Three-Body Problem with Probabilistic Uncertainty Using Port-Hamiltonian Representation. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN vol. 19 392–399 (2021) – 10.2322/tastj.19.392
- Gihman, I. I. & Skorohod, A. V. Stochastic Differential Equations. (Springer Berlin Heidelberg, 1972). doi:10.1007/978-3-642-88264-7 – 10.1007/978-3-642-88264-7
- Mao, X. & Szpruch, L. Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. Journal of Computational and Applied Mathematics vol. 238 14–28 (2013) – 10.1016/j.cam.2012.08.015
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Kushner HJ.. Kushner HJ. Stochastic stability and control. New York: Academic Press; 1967. (1967)
- Itô, K. On a Formula Concerning Stochastic Differentials. Nagoya Mathematical Journal vol. 3 55–65 (1951) – 10.1017/s0027763000012216
- Øksendal, B. Stochastic Differential Equations. Universitext (Springer Berlin Heidelberg, 1998). doi:10.1007/978-3-662-03620-4 – 10.1007/978-3-662-03620-4