STOCHASTIC GALERKIN METHOD AND PORT-HAMILTONIAN FORM FOR LINEAR FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS
Authors
Abstract
We consider linear first-order systems of ordinary differential equations (ODEs) in port-Hamiltonian (pH) form. Physical parameters are remodeled as random variables to conduct an uncertainty quantification. A stochastic Galerkin projection yields a larger deterministic system of ODEs, which does not exhibit a pH form in general. We apply transformations of the original systems such that the stochastic Galerkin projection becomes structure-preserving. Furthermore, we investigate meaning and properties of the Hamiltonian function belonging to the stochastic Galerkin system. A large number of random variables implies a high-dimensional stochastic Galerkin system, which suggests itself to apply model order reduction (MOR) generating a low-dimensional system of ODEs. We discuss structure preservation in projection-based MOR, where the smaller systems of ODEs feature pH form again. Results of numerical computations are presented using two test examples.
Citation
- Journal: International Journal for Uncertainty Quantification
- Year: 2024
- Volume: 14
- Issue: 4
- Pages: 65–82
- Publisher: Begell House
- DOI: 10.1615/int.j.uncertaintyquantification.2024050099
BibTeX
@article{Pulch_2024,
title={{STOCHASTIC GALERKIN METHOD AND PORT-HAMILTONIAN FORM FOR LINEAR FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS}},
volume={14},
ISSN={2152-5080},
DOI={10.1615/int.j.uncertaintyquantification.2024050099},
number={4},
journal={International Journal for Uncertainty Quantification},
publisher={Begell House},
author={Pulch, Roland and Sète, Olivier},
year={2024},
pages={65--82}
}
References
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Cherifi, K., Gernandt, H. & Hinsen, D. The difference between port-Hamiltonian, passive and positive real descriptor systems. Math. Control Signals Syst. 36, 451–482 (2023) – 10.1007/s00498-023-00373-2
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- Sullivan, T. J. Introduction to Uncertainty Quantification. Texts in Applied Mathematics (Springer International Publishing, 2015). doi:10.1007/978-3-319-23395-6 – 10.1007/978-3-319-23395-6
- Xiu, D. Numerical Methods for Stochastic Computations. (2010) doi:10.1515/9781400835348 – 10.1515/9781400835348
- Pulch, R. & Xiu, D. Generalised Polynomial Chaos for a Class of Linear Conservation Laws. J Sci Comput 51, 293–312 (2011) – 10.1007/s10915-011-9511-5
- Pulch, R. Model order reduction and low-dimensional representations for random linear dynamical systems. Mathematics and Computers in Simulation 144, 1–20 (2018) – 10.1016/j.matcom.2017.05.007
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30, (2018) – 10.1007/s00498-018-0223-3
- Pulch, R. Stochastic Galerkin method and port-Hamiltonian form for linear dynamical systems of second order. Mathematics and Computers in Simulation 216, 187–197 (2024) – 10.1016/j.matcom.2023.09.005
- Huang, Y., Jiang, Y. & Xu, K. Structure‐preserving model reduction of port‐Hamiltonian systems based on projection. Asian Journal of Control 23, 1782–1791 (2020) – 10.1002/asjc.2332
- Morandin, R., Nicodemus, J. & Unger, B. Port-Hamiltonian Dynamic Mode Decomposition. SIAM J. Sci. Comput. 45, A1690–A1710 (2023) – 10.1137/22m149329x
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48, 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Ionescu, T. C. & Astolfi, A. Moment matching for linear port Hamiltonian systems. IEEE Conference on Decision and Control and European Control Conference 7164–7169 (2011) doi:10.1109/cdc.2011.6160760 – 10.1109/cdc.2011.6160760
- Willems, J. C. Dissipative Dynamical Systems. European Journal of Control 13, 134–151 (2007) – 10.3166/ejc.13.134-151
- Pulch, R. Stability-preserving model order reduction for linear stochastic Galerkin systems. J.Math.Industry 9, (2019) – 10.1186/s13362-019-0067-6
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control 16, 401–406 (2010) – 10.3166/ejc.16.401-406
- Xu, K. & Jiang, Y. Structure‐preserving interval‐limited balanced truncation reduced models for port‐Hamiltonian systems. IET Control Theory & Appl 14, 405–414 (2020) – 10.1049/iet-cta.2019.0566
- Gugercin, S., Antoulas, A. C. & Beattie, C. $\mathcal{H}_2$ Model Reduction for Large-Scale Linear Dynamical Systems. SIAM J. Matrix Anal. & Appl. 30, 609–638 (2008) – 10.1137/060666123
- Castagnotto, A., Varona, M. C., Jeschek, L. & Lohmann, B. sss & sssMOR: Analysis and reduction of large-scale dynamic systems in MATLAB. at - Automatisierungstechnik 65, 134–150 (2017) – 10.1515/auto-2016-0137
- Marquez, F. M., Zufiria, P. J. & Yebra, L. J. Port-Hamiltonian Modeling of Multiphysics Systems and Object-Oriented Implementation With the Modelica Language. IEEE Access 8, 105980–105996 (2020) – 10.1109/access.2020.3000129