Stability of (Dissipative Hamiltonian) Differential-Algebraic Equations
Authors
Abstract
The stability theory for differential-algebraic equation (DAE) systems is discussed. Topics include stability, asymptotic, and exponential stability as well as the recent concept of hypocoercivity. As special model class then dissipative Hamiltonian differential-algebraic equations are studied, where it is shown that the analysis is significantly simpler due to the structure of the class.
Keywords
34D20; 37C75; 37J25; 93D05
Citation
- ISBN: 9783031713255
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-71326-2_3
BibTeX
@inbook{Mehrmann_2024,
title={{Stability of (Dissipative Hamiltonian) Differential-Algebraic Equations}},
ISBN={9783031713262},
ISSN={1617-9692},
DOI={10.1007/978-3-031-71326-2_3},
booktitle={{Recent Stability Issues for Linear Dynamical Systems}},
publisher={Springer Nature Switzerland},
author={Mehrmann, Volker},
year={2024},
pages={127--156}
}
References
- Achleitner, F., Arnold, A. & Mehrmann, V. Hypocoercivity and hypocontractivity concepts for linear dynamical systems. The Electronic Journal of Linear Algebra vol. 39 33–61 (2023) – 10.13001/ela.2023.7531
- Adrianova, L. Introduction to Linear Systems o Differential Equations. Translations of Mathematica Monographs (1995) doi:10.1090/mmono/146 – 10.1090/mmono/146
- C Beattie, Math. Control Signals Syst. (2018)
- Behr, M., Benner, P. & Heiland, J. Solution formulas for differential Sylvester and Lyapunov equations. Calcolo vol. 56 (2019) – 10.1007/s10092-019-0348-x
- Boyd, S., El Ghaoui, L., Feron, E. & Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory. (1994) doi:10.1137/1.9781611970777 – 10.1137/1.9781611970777
- KE Brenan, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (1996)
- Bunse-Gerstner, A., Byers, R., Mehrmann, V. & Nichols, N. K. Feedback design for regularizing descriptor systems. Linear Algebra and its Applications vol. 299 119–151 (1999) – 10.1016/s0024-3795(99)00167-6
- Byers, R. & Nichols, N. K. On the stability radius of a generalized state-space system. Linear Algebra and its Applications vols 188–189 113–134 (1993) – 10.1016/0024-3795(93)90466-2
- Campbell, S. L. A General Form for Solvable Linear Time Varying Singular Systems of Differential Equations. SIAM Journal on Mathematical Analysis vol. 18 1101–1115 (1987) – 10.1137/0518081
- Campbell, S. L. Linearization of DAEs along trajectories. ZAMP Zeitschrift f�r angewandte Mathematik und Physik vol. 46 70–84 (1995) – 10.1007/bf00952257
- Du, N. H. & Linh, V. H. On the robust stability of implicit linear systems containing a small parameter in the leading term. IMA Journal of Mathematical Control and Information vol. 23 67–84 (2006) – 10.1093/imamci/dni044
- Du, N. H., Linh, V. H. & Mehrmann, V. Robust Stability of Differential-Algebraic Equations. Surveys in Differential-Algebraic Equations I 63–95 (2013) doi:10.1007/978-3-642-34928-7_2 – 10.1007/978-3-642-34928-7_2
- Eich-Soellner, E. & Führer, C. Numerical Methods in Multibody Dynamics. European Consortium for Mathematics in Industry (Vieweg+Teubner Verlag, 1998). doi:10.1007/978-3-663-09828-7 – 10.1007/978-3-663-09828-7
- Embree, M. & Keeler, B. Pseudospectra of Matrix Pencils for Transient Analysis of Differential-Algebraic Equations. SIAM Journal on Matrix Analysis and Applications vol. 38 1028–1054 (2017) – 10.1137/15m1055012
- Emmrich, E. & Mehrmann, V. Operator Differential-Algebraic Equations Arising in Fluid Dynamics. Computational Methods in Applied Mathematics vol. 13 443–470 (2013) – 10.1515/cmam-2013-0018
- FR Gantmacher, The Theory of Matrices (1959)
- Gernandt, H. & Haller, F. E. On the stability of port-Hamiltonian descriptor systems. IFAC-PapersOnLine vol. 54 137–142 (2021) – 10.1016/j.ifacol.2021.11.068
- Gernandt, H., Haller, F. E. & Reis, T. A Linear Relation Approach to Port-Hamiltonian Differential-Algebraic Equations. SIAM Journal on Matrix Analysis and Applications vol. 42 1011–1044 (2021) – 10.1137/20m1371166
- Heinkenschloss, M., Sorensen, D. C. & Sun, K. Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations. SIAM Journal on Scientific Computing vol. 30 1038–1063 (2008) – 10.1137/070681910
- M Hou, A three–link planar manipulator model (1994)
- Kunkel, P. & Mehrmann, V. Analysis of Over- and Underdetermined Nonlinear Differential-Algebraic Systems with Application to Nonlinear Control Problems. Mathematics of Control, Signals, and Systems vol. 14 233–256 (2001) – 10.1007/pl00009884
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- P Kunkel, Electron. Trans. Numer. Anal. (2007)
- Kunkel, P., Mehrmann, V. & Scholz, L. Self-adjoint differential-algebraic equations. Mathematics of Control, Signals, and Systems vol. 26 47–76 (2013) – 10.1007/s00498-013-0109-3
- P Lancaster, The Theory of Matrices (1985)
- Layton, W. Introduction to the Numerical Analysis of Incompressible Viscous Flows. (2008) doi:10.1137/1.9780898718904 – 10.1137/1.9780898718904
- VH Linh, Bohl and Sacker-Sell spectral intervals for differential-algebraic equations. J. Dyn. Differ. Equ. (2009)
- Linh, V. H. & Mehrmann, V. Approximation of Spectral Intervals and Leading Directions for Differential-Algebraic Equation via Smooth Singular Value Decompositions. SIAM Journal on Numerical Analysis vol. 49 1810–1835 (2011) – 10.1137/100806059
- Linh, V. H. & Mehrmann, V. Chapter 4: Spectra and Leading Directions for Linear DAEs. Control and Optimization with Differential-Algebraic Constraints 59–78 (2012) doi:10.1137/9781611972252.ch4 – 10.1137/9781611972252.ch4
- Linh, V. H., Mehrmann, V. & Van Vleck, E. S. QR methods and error analysis for computing Lyapunov and Sacker–Sell spectral intervals for linear differential-algebraic equations. Advances in Computational Mathematics vol. 35 281–322 (2010) – 10.1007/s10444-010-9156-1
- Mattheij, R. M. M. & Wijckmans, P. M. E. J. Numerical Algorithms vol. 19 159–171 (1998) – 10.1023/a:1019158524005
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- Mehrmann, V. Index Concepts for Differential-Algebraic Equations. Encyclopedia of Applied and Computational Mathematics 676–681 (2015) doi:10.1007/978-3-540-70529-1_120 – 10.1007/978-3-540-70529-1_120
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- Rabier, P. J. & Rheinboldt, W. C. Classical and generalized solutions of time-dependent linear differential-algebraic equations. Linear Algebra and its Applications vol. 245 259–293 (1996) – 10.1016/0024-3795(94)00243-6
- Rabier, P. J. & Rheinboldt, W. C. Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. (2000) doi:10.1137/1.9780898719536 – 10.1137/1.9780898719536
- Rannacher, R. Finite Element Methods for the Incompressible Navier-Stokes Equations. Fundamental Directions in Mathematical Fluid Mechanics 191–293 (2000) doi:10.1007/978-3-0348-8424-2_6 – 10.1007/978-3-0348-8424-2_6
- Reis, T. & Voigt, M. The Kalman–Yakubovich–Popov inequality for differential-algebraic systems: Existence of nonpositive solutions. Systems & Control Letters vol. 86 1–8 (2015) – 10.1016/j.sysconle.2015.09.003
- Simeon, B. Computational Flexible Multibody Dynamics. (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-35158-7 – 10.1007/978-3-642-35158-7
- GW Stewart, Matrix Perturbation Theory (1990)
- Stykel, T. Stability and inertia theorems for generalized Lyapunov equations. Linear Algebra and its Applications vol. 355 297–314 (2002) – 10.1016/s0024-3795(02)00354-3
- Trefethen, L. N. & Embree, M. Spectra and Pseudospectra. (2005) doi:10.1515/9780691213101 – 10.1515/9780691213101
- Trenn, S. Solution Concepts for Linear DAEs: A Survey. Surveys in Differential-Algebraic Equations I 137–172 (2013) doi:10.1007/978-3-642-34928-7_4 – 10.1007/978-3-642-34928-7_4
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Zhou, B. Lyapunov differential equations and inequalities for stability and stabilization of linear time-varying systems. Automatica vol. 131 109785 (2021) – 10.1016/j.automatica.2021.109785