Smooth stabilisation of nonholonomic robots subject to disturbances
Authors
Alejandro Donaire, Jose Guadalupe Romero, Tristan Perez, Romeo Ortega
Abstract
In this paper, we address the problem of stabilisation of robots subject to nonholonommic constraints and external disturbances using port-Hamiltonian theory and smooth time-invariant control laws. This should be contrasted with the commonly used switched or time-varying laws. We propose a control design that provides asymptotic stability of an manifold (also called relative equilibria)-due to the Brockett condition this is the only type of stabilisation possible using smooth time-invariant control laws. The equilibrium manifold can be shaped to certain extent to satisfy specific control objectives. The proposed control law also incorporates integral action, and thus the closed-loop system is robust to unknown constant disturbances. A key step in the proposed design is a change of coordinates not only in the momentum, but also in the position vector, which differs from coordinate transformations previously proposed in the literature for the control of nonholonomic systems. The theoretical properties of the control law are verified via numerical simulation based on a robotic ground vehicle model with differential traction wheels and non co-axial centre of mass and point of contact.
Citation
- Journal: 2015 IEEE International Conference on Robotics and Automation (ICRA)
- Year: 2015
- Volume:
- Issue:
- Pages: 4385–4390
- Publisher: IEEE
- DOI: 10.1109/icra.2015.7139805
BibTeX
@inproceedings{Donaire_2015,
title={{Smooth stabilisation of nonholonomic robots subject to disturbances}},
DOI={10.1109/icra.2015.7139805},
booktitle={{2015 IEEE International Conference on Robotics and Automation (ICRA)}},
publisher={IEEE},
author={Donaire, Alejandro and Romero, Jose Guadalupe and Perez, Tristan and Ortega, Romeo},
year={2015},
pages={4385--4390}
}
References
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica 48, 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica 48, 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Greenwood, D. T. Advanced Dynamics. (2003) doi:10.1017/cbo9780511800207 – 10.1017/cbo9780511800207
- Developments in nonholonomic control problems. IEEE Control Syst. 15, 20–36 (1995) – 10.1109/37.476384
- lanczos, The Variational Principle of Mechanics (1960)
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters 61, 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters 62, 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Romero, J. G., Navarro-Alarcon, D. & Panteley, E. Robust globally exponentially stable control for mechanical systems in free/constrained-motion tasks. 52nd IEEE Conference on Decision and Control 3067–3072 (2013) doi:10.1109/cdc.2013.6760350 – 10.1109/cdc.2013.6760350
- sarras, On the stabilisation of Nonholonomic mechanical systems via immersion and invariance. Proceedings of the 18th IFAC World Congress (2011)
- Bloch, A. M. Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics (Springer New York, 2003). doi:10.1007/b97376 – 10.1007/b97376
- blankenstein, Matching and stabilization of constrained systems. Proceedings of the International Symposium on Mathematical Theory of Networks and Systems (2002)
- chaplygin, On the Theory of Motion of nonholonomic systems. The reducing-multiplier theorem (original in Russian). Matematich-eskii Sbornik (1911)
- Borisov, A. V. & Mamaev, I. S. REG CHAOT DYN 7, 43 (2002) – 10.1070/rd2002v007n01abeh000194
- Luca, A. D. & Oriolo, G. Modelling and Control of Nonholonomic Mechanical Systems. CISM International Centre for Mechanical Sciences 277–342 (1995) doi:10.1007/978-3-7091-4362-9_7 – 10.1007/978-3-7091-4362-9_7
- Cortés Monforte, J. Geometric, Control and Numeric Aspects of Nonholonomic Systems. Lecture Notes in Mathematics (Springer Berlin Heidelberg, 2002). doi:10.1007/b84020 – 10.1007/b84020
- astolfi, A globally exponentially convergent immersion and invariance speed observer for n-degrees of freedom mechanical systems with nonholonomic constraints. (2010)
- Astolfi, A. & Schaufelberger, W. State and output feedback stabilization of multiple chained systems with discontinuous control. Systems & Control Letters 32, 49–56 (1997) – 10.1016/s0167-6911(97)00053-4
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45, 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Murray, R. M. & Sastry, S. S. Nonholonomic motion planning: steering using sinusoids. IEEE Trans. Automat. Contr. 38, 700–716 (1993) – 10.1109/9.277235
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Trans. Automat. Contr. 55, 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8