Robust globally exponentially stable control for mechanical systems in free/constrained-motion tasks
Authors
Jose Guadalupe Romero, David Navarro-Alarcon, Elena Panteley
Abstract
In this paper, we address the global exponential stability problem of perturbed mechanical systems in free-motion and interacting with passive environments. Particularly, we are interested in incorporating an exponentially stable response to a robust passivity-based control design. We formulate and analyse the stability of the proposed controllers based on the port-Hamiltonian framework. One of the novelties of the presented control design, is that exponential stability is achieved without removing the natural non-linearity of the mechanical system. To the best of our knowledge, this is the first time an exponentially stable controller is reported with this passivity-based method.
Citation
- Journal: 52nd IEEE Conference on Decision and Control
- Year: 2013
- Volume:
- Issue:
- Pages: 3067–3072
- Publisher: IEEE
- DOI: 10.1109/cdc.2013.6760350
BibTeX
@inproceedings{Romero_2013,
title={{Robust globally exponentially stable control for mechanical systems in free/constrained-motion tasks}},
DOI={10.1109/cdc.2013.6760350},
booktitle={{52nd IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Romero, Jose Guadalupe and Navarro-Alarcon, David and Panteley, Elena},
year={2013},
pages={3067--3072}
}
References
- stone, The Generalized Weierstrass Approximation Theorem (1948)
- Arimoto, S., Han, H.-Y., Cheah, C. C. & Kawamura, S. Extension of impedance matching to nonlinear dynamics of robotic tasks. Systems & Control Letters 36, 109–119 (1999) – 10.1016/s0167-6911(98)00084-x
- Navarro-Alarcon, D., Li, P. & Yip, H. M. Energy shaping control for robot manipulators in explicit force regulation tasks with elastic environments. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 4222–4228 (2011) doi:10.1109/iros.2011.6094641 – 10.1109/iros.2011.6094641
- Chiaverini, S., Siciliano, B. & Villani, L. Force/position regulation of compliant robot manipulators. IEEE Trans. Automat. Contr. 39, 647–652 (1994) – 10.1109/9.280780
- Raibert, M. H. & Craig, J. J. Hybrid Position/Force Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 126–133 (1981) – 10.1115/1.3139652
- Doulgeri, Z. & Karayiannidis, Y. Force position control for a robot finger with a soft tip and kinematic uncertainties. Robotics and Autonomous Systems 55, 328–336 (2007) – 10.1016/j.robot.2006.11.003
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45, 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- murray, A Mathematical Introduction to Robotic Manipulation (1994)
- Navarro-Alarcon, D., Liu, Y.-H., Romero, J. G. & Li, P. Energy Shaping Methods for Asymptotic Force Regulation of Compliant Mechanical Systems. IEEE Trans. Contr. Syst. Technol. 22, 2376–2383 (2014) – 10.1109/tcst.2014.2309659
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters 62, 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Romero, J. G., Donaire, A. & Ortega, R. Robustifying energy shaping control of mechanical systems. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 4424–4429 (2012) doi:10.1109/cdc.2012.6425923 – 10.1109/cdc.2012.6425923
- lancaster, The Theory of Matrices (1985)
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters 61, 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Trans. Automat. Contr. 55, 1059–1074 (2010) – 10.1109/tac.2010.2042010
- khalil, Nonlinear Systems (2002)